Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(x\ge0\Rightarrow x^2+x+m=1\)
\(\Leftrightarrow-x^2-x+1=m\)
Xét \(f\left(x\right)=-x^2-x+1\) khi \(x\ge0\)
\(a=-1< 0;-\dfrac{b}{2a}=-\dfrac{1}{2}< 0\Rightarrow f\left(x\right)\) nghịch biến
- Với \(x< 0\) \(\Rightarrow-x^2-x+m=1\Leftrightarrow x^2+x+1=m\)
Xét \(g\left(x\right)=x^2+x+1\) khi \(x< 0\)
\(a=1>0;-\dfrac{b}{2a}=-\dfrac{1}{2};f\left(-\dfrac{1}{2}\right)=-\dfrac{3}{4}\)
Hàm nghịch biến khi \(x< -\dfrac{1}{2}\) và đồng biến khi \(-\dfrac{1}{2}< x< 0\)
Do đó ta có BBT như sau:
Từ BBT ta thấy pt có 2 nghiệm phân biệt khi và chỉ khi \(m=1\)
(Với \(m=-\dfrac{3}{4}\) pt cũng có 2 nghiệm nhưng 1 trong 2 nghiệm là nghiệm kép)
Thầy cho em hỏi thêm với ạ , làm sao để có thể từ bảng biến thiên suy ra được nghiệm kép hay nghiệm phân biệt ạ
Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)
Ko mất tính tổng quát, giả sử \(x_1=3x_2\)
Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)
Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)
\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)
Vậy ko tồn tại m thỏa mãn
Phương trình có 2 nghiệm pb khi:
\(\Delta'=\left(m-1\right)^2+m-3>0\)
\(\Leftrightarrow m^2-m-2>0\)
\(\Rightarrow\left[{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\)
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
ĐKXĐ: \(1\le x\le2\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+3x-2=0\\x^2-2x+m=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x^2-2x+m=0\left(1\right)\end{matrix}\right.\)
Pt có 2 nghiệm pb khi và chỉ khi:
TH1: (1) vô nghiệm \(\Leftrightarrow m>1\)
Th2: 2 nghiệm của (1) đều không thuộc \(\left[1;2\right]\)
(1) \(\Leftrightarrow x^2-2x=-m\)
Xét hàm \(f\left(x\right)=x^2-2x\)
\(f\left(1\right)=-1\) ; \(f\left(2\right)=0\)
Để hàm có 2 nghiệm đều không thuộc khoảng đã cho thì \(-m>0\Leftrightarrow m< 0\)
Vậy \(\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[\left(x-2\right)^2-4\right]^2-3\left(x-2\right)^2+m=0\)
\(\left(x-2\right)^2=t\ge0\Rightarrow pt\Leftrightarrow\left(t-4\right)^2-3t+m=0\)
\(\Leftrightarrow t^2-11t+16+m=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=11^2-4\left(16+m\right)>0\\x_1+x_2=11>0\left(tm\right)\\x_1x_2=16+m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{57}{4}\\m< 16\end{matrix}\right.\Leftrightarrow m< \dfrac{57}{4}\)
b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4=2m-1\\x^2-3x-4=-2m+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x-4-2m+1=0\\x^2-3x-4+2m-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2m+3=0\\x^2-3x+2m-5=0\end{matrix}\right.\)
Để phương trình có bốn nghiệm phân biệt thì \(\left\{{}\begin{matrix}9-4\left(-2m+3\right)>0\\9-4\left(2m-5\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9+8m-12>0\\9-8m+20>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m>3\\8m< 29\end{matrix}\right.\Leftrightarrow\dfrac{3}{8}< m< \dfrac{29}{8}\)
Phương trình đã cho tương đương
\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)
Để phương trình có 2 nghiệm phân biệt thì
\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)
⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)
Dựa vào trục số, (1) ⇔ m > 0
Vậy điều kiện của m là m > 0
Sai thì thứ lỗi ạ !