Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)
=25+8m-20=8m+5
Để phương trình có nghiệm kép thì 8m+5=0
=>m=-5/8
=>x^2-5x+25/4=0
=>x=5/2
b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)
\(=4m^2-4m+1-4m^2+8m-12=4m-11\)
Để phương trình có nghiệm kép thì 4m-11=0
=>m=11/4
=>x^2-9/2x+81/16=0
=>x=9/4
c: TH1: m=-3
=>-(2*(-3)+1)x+(-3-1)=0
=>-(-5x)-4=0
=>5x-4=0
=>x=4/5(nhận)
TH2: m<>-3
\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)
\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)
\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)
Để phương trình có nghiệm kép thì -4m+13=0
=>m=13/4
=>25/4x^2-15/2x+9/4=0
=>(5/2x-3/2)^2=0
=>x=3/2:5/2=3/2*2/5=3/5
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
a: \(\Delta=\left(2m-6\right)^2-4\cdot1\cdot\left(m-3\right)\)
\(=4m^2-24m+36-4m+12\)
\(=4m^2-28m+48\)
\(=4\left(m-3\right)\left(m-4\right)\)
Để phương trình có nghiệm kép thì (m-3)(m-4)=0
=>m=3 hoặc m=4
b: Trường hợp 1: m=7/2
Phương trình sẽ là \(2\cdot\left(2\cdot\dfrac{7}{2}+5\right)x-14\cdot\dfrac{7}{2}+1=0\)
\(\Leftrightarrow24x-48=0\)
hay x=2
=>Nhận
Trường hợp 2: m<>7/2
\(\Delta=\left(4m+10\right)^2-4\cdot\left(2m-7\right)\left(-14m+1\right)\)
\(=16m^2+80m+100-4\left(-28m^2+2m+98m-7\right)\)
\(=16m^2+80m+100+112m^2-400m+28\)
\(=128m^2-320m+128\)
\(=64\left(2m^2-5m+2\right)\)
Để phương trình có hai nghiệm phân biệt thì (2m-1)(m-1)=0
=>m=1 hoặc m=1/2
a: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m+6\right)\)
\(=4m^2-4m-24\)
\(=4\left(m^2-m-6\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m^2-m-6>0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
b: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(m+3\right)\)
\(=4m^2-4m^2-12m\)
=-12m
Để phương trình vô nghiệm thì Δ<0
hay m>0
c: Ta có: \(\text{Δ}=\left(2m-3\right)^2-4\left(m-2\right)\left(m+1\right)\)
\(=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=4m^2-12m+9-4m^2+4m+8\)
\(=-8m+17\)
Để phương trình có nghiệm kép thì Δ=0
hay \(m=\dfrac{17}{8}\)
\(a,\)Để pt \(x^2+\left(2m+1\right)x+m\left(m-1\right)=0\) có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-m\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+4m=0\)
\(\Leftrightarrow8m+1=0\)
\(\Leftrightarrow m=-\dfrac{1}{8}\)
Thay \(m=-\dfrac{1}{8}\) vào pt
\(\Rightarrow x^2+\left[2.\left(-\dfrac{1}{8}\right)+1\right]x-\dfrac{1}{8}\left(-\dfrac{1}{8}-1\right)=0\)
\(\Rightarrow x^2+\dfrac{3}{4}x+\dfrac{9}{64}=0\)
\(\Rightarrow x=-\dfrac{3}{8}\)
\(b,\) Thay \(m=1\) vào pt :
\(\Rightarrow x^2+\left(2.1+1\right)x+1\left(1-1\right)=0\)
\(\Rightarrow x^2+3x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Bạn giải denta và chú ý điều kiện của a nhá
a: TH1: m=3
=>2x-5=0
=>x=5/2(nhận)
TH2: m<>3
Δ=2^2-4*(m-3)*(-5)
=4+20(m-3)
=4+20m-60=20m-56
Để phương trình có nghiệm kép thì 20m-56=0
=>m=2,8
=>-0,2x^2+2x-5=0
=>x^2-10x+25=0
=>x=5
b: Để phươg trình có hai nghiệm pb thì 20m-56>0
=>m>2,8
A, ta có: \(\Delta’\)=m2-1
Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1
B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1
Nghiem kép đó là: 0
\(x^2+2\left(m+1\right)x+2m+2=0\)
\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)
a, Để phương trình có hai nghiệm phân biệt thì:
\(\Delta'>0\)
\(\Leftrightarrow m^2>1\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow m< -1;m>1\)
b, Phương trinh có nghiệm kép khi:
\(\Delta'\ge0\)
\(\Leftrightarrow m^2-1\ge0\)
\(\Leftrightarrow m\le-1;m\ge1\)
Theo Viet ta có:
\(x_1+x_2=-2\left(m+1\right)\)
\(x_1x_2=2\left(m+1\right)\)
\(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow4m^2+4m-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)
So với điều kiện phương trình có nghiệm m=1 ; m =-2
a: \(x^2+\left(2m+1\right)x+m^2-3=0\)
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)
\(=4m^2+4m+1-4m^2+12=4m+13\)
Để phương trình có nghiệm kép thì 4m+13=0
=>\(m=-\dfrac{13}{4}\)
Thay m=-13/4 vào phương trình, ta được:
\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)
=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)
=>\(\left(x-\dfrac{11}{4}\right)^2=0\)
=>x-11/4=0
=>x=11/4
b: TH1: m=2
Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)
=>3x-1=0
=>3x=1
=>\(x=\dfrac{1}{3}\)
=>Khi m=2 thì phương trình có nghiệm kép là x=1/3
TH2: m<>2
\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)
\(=m^2+2m+1-4\left(m^2-5m+6\right)\)
\(=m^2+2m+1-4m^2+20m-24\)
\(=-3m^2+22m-23\)
Để phương trình có nghiệm kép thì Δ=0
=>\(-3m^2+22m-23=0\)
=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)
*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)
=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)
*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)
=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)
c: TH1: m=0
Phương trình sẽ trở thành
\(0x^2-\left(1-2\cdot0\right)x+0=0\)
=>-x=0
=>x=0
=>Nhận
TH2: m<>0
\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)
\(=4m^2-4m+1-4m^2=-4m+1\)
Để phương trình có nghiệm kép thì -4m+1=0
=>-4m=-1
=>\(m=\dfrac{1}{4}\)
Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)
=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)
=>\(x_1=x_2=\dfrac{2}{2}=1\)