Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi các cạnh của HCN là a,b. Chu vi HCN là: \(2\left(a+b\right)=34\)nên \(a+b=17\)hay \(a=17-b\)
- Đường chéo của HCN là 13 nên theo định lý Pitago ta có: \(a^2+b^2=13^2\). Thay \(a=17-b\)
\(\left(17-b\right)^2+b^2=169\Leftrightarrow17^2-2\cdot17\cdot b+b^2+b^2=169\Leftrightarrow2b^2-34b+120=0\)
\(\Leftrightarrow b^2-17b+60=0\Leftrightarrow\left(b-5\right)\left(b-12\right)=0\Leftrightarrow\hept{\begin{cases}b=5\\b=12\end{cases}}\)
- Nếu b = 5 cm thì a = 17-5 = 12 cm.
- Nếu b = 12 cm thì a = 17-12 = 5 cm.
Gọi chiều dài là a, chiều rộng là b
Ta có :
\(a.b=2\left(a+b\right)\)
\(\Rightarrow2\left(a+b\right)-ab=0\)
\(2a+2b-ab=0\)
\(a\left(2-b\right)+2b=0\)
\(a\left(2-b\right)+2b-4=0-4\)
\(a\left(2-b\right)-2\left(2-b\right)=-4\)
\(\left(a-2\right)\left(b-2\right)=4\)
\(\Rightarrow a-2;b-2\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Do \(a,b>0\) nên ta bỏ giá trị -4 và -2
Gọi a là chiều dài , b là chiều rộng
Theo bài ra ta có :
( a + b ) x 2 = 34 => a + b = 34 : 2
=> a + b = 17
=> 3 ( a + b ) = 51
=> 3a + 3b = 51 ( 1 )
Lại có : 3b - 2a = 1 => 3b = 2a + 1
Thay 3b = 2a + 1 vào ( 1 ) , ta được :
3a + ( 2a + 1 ) = 51
=> 5a + 1 = 51
=> 5a = 51 - 1
=> 5a = 50
=> a = 50 : 5
=> a = 10
Nên chiều dài hình chữ nhật là 10 cm .
Chiều rộng hình chữ nhật là :
17 - 10 = 7 ( cm )
Đ/s : chiều dài : 10 cm
chiều rộng : 7 cm
Chúc bạn học giỏi
Bạn ơi Hình chũ nhật không có đường chéo
Chỉ có hình thoi mới có đường chéo thôi
HỌC TỐT !
Gọi x,y lần lượt là chiều dai , chiều rộng của hình chữ nhật
Vì chu vi hình chữ nhật bằng 36m nên ta có :
( x+y) . 2 = 36
<=> 2x + 2y = 36 (1)
theeo đề ra ta có :
4x = 5y
<=> 4x - 5y = 0 (2)
Từ (1)(2) ta có hpt :
\(\hept{\begin{cases}2x+2y=36\\4x-5y=0\end{cases}}\)<=>\(\hept{\begin{cases}4x+4y=72\\4x-5y=0\end{cases}}=>\hept{\begin{cases}9y=72\\4x-5y=0\end{cases}}\)<=> \(\hept{\begin{cases}y=8\\4x-40=0\end{cases}}\)<=>\(\hept{\begin{cases}y=8\\x=10\end{cases}}\)
Vậy chiều dài là 10m
chiều rộng là 8m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của hình chữ nhật(Điều kiện: 0<a<14; 0<b<14 và \(a\ge b\))
Vì chu vi của mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
\(\Leftrightarrow a+b=14\)(1)
Ta có: a+b=14(cmt)
mà \(a\ge b\)
nên 2a>14
hay a>7
\(\Leftrightarrow b< 7\)
Vì độ dài đường chéo mảnh đất là 10m nên ta có phương trình:
\(a^2+b^2=10^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2+b^2-28b+196-100=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left[{}\begin{matrix}b=6\left(nhận\right)\\b=8\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-6=8\left(nhận\right)\\b=6\end{matrix}\right.\)
Vậy: Chiều dài của mảnh đất là 8m; chiều rộng của mảnh đất là 6m
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)(TM)
Vậy HPT có nghiệm (x;y)= (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 8cm và 6cm
Nửa cv khu đất hcn là 48:2=24(m)
Chiều dài khu đất hcn là \(24:\left(2+1\right)\cdot2=16\left(m\right)\)
Chiều rộng khu đất hcn là \(24-16=8\left(m\right)\)
Diện tích khu đất hcn là \(8\cdot16=128\left(m^2\right)\)
Cạnh khu đất hv là \(\sqrt{128}\approx11,3\left(m\right)\)
Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y
(21 > x > y > 0; m)
Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42
Đường chéo hình chữ nhật dài 15m nên ta có phương trình: x 2 + y 2 = 152
Suy ra hệ phương trình:
x + y .2 = 42 x 2 + y 2 = 225 ⇔ x + y = 21 x 2 + y 2 = 225 ⇔ y = 21 − x x 2 + 21 − x 2 = 225 1
Giải phương trình (1) ta được:
2 x 2 − 42 x + 216 = 0 ⇔ x = 9 x = 12
Với x = 9 thì y = 12 (loại)
Với x = 12 thì y = 9 (thỏa mãn)
Vậy chiều rộng mảnh đất ban đầu là 9m.
Đáp án: C
Gọi kích thước của hcn đó là a và b (cm; a,b > 0 )
Ta có : nửa chu vi của hcn đó là:
a+b = \(\frac{34}{2}\) =17 (1)
Mà : đường chéo của hcn = 13cm
=> \(\sqrt{a^2+b^2}=13\) (2)
=> cặp số thỏa mãn (1) và (2) là 12 và 5
Hay chiều dài của hcn là 12 cm
chiều rộng của hcn là 5 cm
Hình chữ nhật không có đường chéo nhé!