Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số thứ nhất là \(x\), số còn lại là \(\frac{3}{8}x\)
theo đề bài ta có: \(\left(\frac{3}{8}x\right)^2-x^2=-880\Rightarrow\frac{9x^2}{64}-x^2=-880\Rightarrow\frac{9x^2-64x^2}{64}=-880\)
=>\(-55x^2=-880.64=-56320\Rightarrow x^2=\left(-56320\right):\left(-55\right)=1024=32^2=\left(-32\right)^2\)
=> x = 32 hoặc -32
vậy 2 số cần tìm là: 32 và 3/8. 32 = 12
hoặc -32 và -12
Gọi hai số phải tìm a và b \((b\ne0)\)
Ta có : \(\frac{a}{b}=\frac{3}{8}=\frac{3k}{8k}(k\ne0)\)
Vậy a = 3k,b = 8k
Do đó : \(a^2-b^2=9k^2-64k^2=-880\)
\(-55k^2=-880\)
\(k^2=16;k=\pm4\)
=> a = 3k = \(\pm12\), b = 8k = \(\pm32\)
Hai số cần tìm là 12;32 hoặc -12;-32
Gọi 2 số cần tìm là a và b ta có
\(\frac{a}{b}=\frac{3}{8}\Rightarrow\frac{a}{3}=\frac{b}{8}\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{8}\right)^2\Rightarrow\frac{a^2}{9}=\frac{b^2}{64}=\frac{a^2-b^2}{9-64}=\frac{-880}{-55}\) (áp dụng tính chất dãy tỷ số bằng nhau)
\(\Rightarrow\frac{a^2}{9}=\frac{880}{55}\Rightarrow a^2=144\Rightarrow a=-12\) hoặc \(a=12\)
+ Với \(a=-12\Rightarrow\frac{a}{b}=\frac{-12}{b}=\frac{3}{8}\Rightarrow b=-32\)
+ Với \(a=12\Rightarrow\frac{a}{b}=\frac{12}{b}=\frac{3}{8}\Rightarrow b=32\)
Gọi hai số cầntìm là avà b (a,b thuộc Z)
Theo bài ra ta có: a = 3/8b
=> a^2 = 9/64.b^2
=> a^2 - b^2 = -880
<=> 9/64.b^2 - b^2 = -880
<=> -55/64.b^2 = -880
<=> b^2 = -880 : -55/64
<=> b^2 = 1024
<=> b^2 = 32^2
<=> b = 32 hoặc -32
<=> a =12 hoặc -12
Vậy ( a,b) = (12,32); (-12,-32)
Tuy vậy bài này còn có một cách giải khác nhưng nó thuộc chương trinh lớp 7 nên mình sẽ ko viết ra
Chúc bạn học tốt
Gọi 2 số đó là a và b
Ta có: a/b=3/8=>a=3/8b
a2-b2=-880
=> (a+b)(a-b)=-880
Thay a=3/8 b ta có:
(3/8b+b).(3/8b-b)=-880
=\(\frac{11}{8}b.\frac{-5}{8}b\)
\(=b^2.\left(\frac{11}{8}.\frac{-5}{8}\right)=b^2.\frac{-55}{64}=-880\)
\(\Rightarrow b^2=-880:\frac{-55}{64}=-880.\frac{64}{-55}=1024=32^2\)
=>b=32
=> a=32.3/8=12
gọi số thứ nhất là a ( a , b \(\in\)N* )
số thứ hai là b
Ta có : \(\frac{a}{b}=\frac{3}{8}=\frac{3k}{8k}\)( k \(\in\)N* )
\(\Rightarrow\left(3k\right)^2-\left(8k\right)^2=-880\)
\(\Rightarrow\left(3k-8k\right).\left(3k+8k\right)=-880\)
\(\Rightarrow\left(-5k\right).\left(11k\right)=-880\)
\(\Rightarrow-55.k^2=-880\)
\(\Rightarrow k^2=\left(-880\right):\left(-55\right)=16\)
Vì k \(\in\)N* nên \(k=4\)
thay a,b vào :
\(a=3k=3.4=12\)
\(b=8k=8.4=32\)
Vậy ( a ; b ) = ( 12 ; 32 )