K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5

mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)

b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn

(a,b).[a,b]=a.b=d.d.6

a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1

26 tháng 2 2016

ket ban nhé

26 tháng 2 2016

2n+7=2n+5

Vì 2n+2=2.1n+1=1n+1=mà chia hết cho 1n+1

suy ra 2.1n+1 chia hết cho 1n+1 

Vì 2n+2+5 chia hết cho 1n+1 nên 5 chia hết cho 1n+1

Mà ư 5 =1,5 nên 1n+1 có giá trị bằng 1 hoặc 5 

Nếu 1n +1=5 thì 1n =4 suy ra n=4

Nếu 1n+n=1 thì 1n=0 suy ra n=0

Gía trị n=0,4

7 tháng 4 2017

Gọi d=ƯCLN(8a+3b;5a+2b)

=> \(8a+3b⋮d\)

 \(5a+2b⋮d\)

=> \(5\left(8a+3b\right)⋮d\)

\(8\left(5a+2b\right)⋮d\)

=>\(40a+15b⋮d\)

\(40a+16b⋮d\)

=>\(\left(40a+16b\right)-\left(40a+15b\right)⋮d\)

=>\(b⋮d\)

Có \(8a+3b⋮d\)

\(5a+2b⋮d\)

=> \(2\left(8a+3b\right)⋮d\)

\(3\left(5a+2b\right)⋮d\)

=>\(16a+6b⋮d\)

\(15a+6b⋮d\)

=>\(\left(16a+6b\right)-\left(15a+6b\right)⋮d\)

=> \(a⋮d\)

Ta có \(a⋮d\)\(b⋮d\), mà a,b là 2 số nguyên tố cùng nhau 

=>d=1

Vì ƯCLN(8a+3b;5a+2b)=1 nên phân số đã cho tối giản

22 tháng 3 2018

ê cần giúp ko

24 tháng 1 2017

mình cũng đang nhờ người trả lời

11 tháng 5 2023

Ta có: a.b = c.(a + b) => a.b + c^2 = c.(a + b + c)

Do a và c nguyên tố cùng nhau nên (a, c) = 1. Từ đó suy ra (a^2, c) = 1 và (b^2, c) = 1.

Mà a.b + c^2 = c.(a + b + c) nên ta có:

a.b + c^2 ≡ 0 (mod c)

a.b ≡ -c^2 (mod c)

a.b ≡ 0 (mod c)

Vì (a, c) = 1 nên ta có (b, c) = 1.

Từ a.b = c.(a + b) và (a, c) = 1, suy ra a|b. Đặt b = a.k (k là số tự nhiên).

Thay vào a.b = c.(a + b), ta được:

a^2.k = c.(a + a.k) => k = c/(a^2 - c)

Vì k là số tự nhiên nên a^2 - c | c. Nhưng (a, c) = 1 nên a^2 - c không chia hết cho c. Do đó a^2 - c = 1.

Từ đó suy ra c = a^2 - 1.

Vậy a.b.c = a^2.b - b là số chính phương.