Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5
mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)
b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn
(a,b).[a,b]=a.b=d.d.6
a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1
Gọi d=ƯCLN(8a+3b;5a+2b)
=> \(8a+3b⋮d\)
\(5a+2b⋮d\)
=> \(5\left(8a+3b\right)⋮d\)
\(8\left(5a+2b\right)⋮d\)
=>\(40a+15b⋮d\)
\(40a+16b⋮d\)
=>\(\left(40a+16b\right)-\left(40a+15b\right)⋮d\)
=>\(b⋮d\)
Có \(8a+3b⋮d\)
\(5a+2b⋮d\)
=> \(2\left(8a+3b\right)⋮d\)
\(3\left(5a+2b\right)⋮d\)
=>\(16a+6b⋮d\)
\(15a+6b⋮d\)
=>\(\left(16a+6b\right)-\left(15a+6b\right)⋮d\)
=> \(a⋮d\)
Ta có \(a⋮d\), \(b⋮d\), mà a,b là 2 số nguyên tố cùng nhau
=>d=1
Vì ƯCLN(8a+3b;5a+2b)=1 nên phân số đã cho tối giản
Ta có: a.b = c.(a + b) => a.b + c^2 = c.(a + b + c)
Do a và c nguyên tố cùng nhau nên (a, c) = 1. Từ đó suy ra (a^2, c) = 1 và (b^2, c) = 1.
Mà a.b + c^2 = c.(a + b + c) nên ta có:
a.b + c^2 ≡ 0 (mod c)
a.b ≡ -c^2 (mod c)
a.b ≡ 0 (mod c)
Vì (a, c) = 1 nên ta có (b, c) = 1.
Từ a.b = c.(a + b) và (a, c) = 1, suy ra a|b. Đặt b = a.k (k là số tự nhiên).
Thay vào a.b = c.(a + b), ta được:
a^2.k = c.(a + a.k) => k = c/(a^2 - c)
Vì k là số tự nhiên nên a^2 - c | c. Nhưng (a, c) = 1 nên a^2 - c không chia hết cho c. Do đó a^2 - c = 1.
Từ đó suy ra c = a^2 - 1.
Vậy a.b.c = a^2.b - b là số chính phương.