Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x-1}+5.0,2^{x-2}=26\)
\(\Leftrightarrow5^{x-1}+\frac{5}{5^{x-2}}=26\)
\(\Leftrightarrow5^{x-1}+\frac{25}{5^{x-1}}=26\)
Đặt \(5^{x-1}=a\)
\(\Rightarrow a+\frac{25}{a}=26\)
\(\Leftrightarrow a^2-26a+25=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=25\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5^{x-1}=1\\5^{x-1}=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
tth, Trần Thanh Phương, Nguyễn Thị Diễm Quỳnh, @Nk>↑@, lê thị hương giang, @Akai Haruma,
@Nguyễn Việt Lâm
Giúp vs ạ! Cần gấp!
Thanks nhiều
1a)Ta có:
\(x^3+y^2+z^3=32\)
\(\Leftrightarrow x^3+y^2+z^3-32=0\)
\(\Leftrightarrow\left(x^3-8\right)+\left(y^2-16\right)+\left(z^2-8\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-8=0\\y^2-16=0\\z^3-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\pm4\\z=2\end{matrix}\right.\)
Mà x,y,z>0 nên \(\left(x;y;z\right)=\left(2;4;2\right)\)
Bài 1:
a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)
\(=5-\sqrt{3}-2+\sqrt{3}=3\)
b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)
\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)
\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)
c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)
d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
Lời giải:
a)
\(\text{PT}(1)\Rightarrow 5(x^2+y^2)=26xy\Leftrightarrow (y-5x)(5y-x)=0\)\(\Rightarrow\left[\begin{matrix}x=5y\\y=5x\end{matrix}\right.\)
Thay vào \(\text{PT}(2)\) :
-Nếu \(x=5y\Rightarrow 24y^2=24\Leftrightarrow y=\pm 1\Rightarrow x=\pm 5\)
-Nếu \(5x=y\Rightarrow -24y^2=24\) (vô lý)
Vậy HPT có nghiệm \((x,y)=(-5,-1),(5,1)\)
b)
Thấy rằng bất kể \(x=0,y=0\) đều không phải nghiệm của HPT. Xét \(x,y \neq 0 \)
\(\text{HPT}\Rightarrow \left\{\begin{matrix} x^2-2xy+\frac{x^2}{y}=6x\\ x^2-2xy=6y\end{matrix}\right.\Rightarrow \frac{x^2}{y}=6(x-y)\Rightarrow x^2+6y^2=6xy\)
Đặt \(x=ty\Rightarrow ^2-6t+6=0\Rightarrow \)\(\left[\begin{matrix}t=3+\sqrt[]{3}\\t=3-\sqrt[]{3}\end{matrix}\right.\)
Thay vào PT \(\left(2\right)\Rightarrow\left[\begin{matrix}\left(3+\sqrt{3}\right)^2y-2\left(3+\sqrt{3}\right)y=6\\\left(3-\sqrt{3}\right)^2y-2\left(3-\sqrt{3}\right)y=6\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}y=-3+2\sqrt{3}\\y=-3-2\sqrt{3}\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-3+3\sqrt{3}\\x=-3-3\sqrt{3}\end{matrix}\right.\)
Phương trình 5 x 2 + 21x − 36 = 0 có a + b + c = 5 +21 – 26 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = 1 ; x 2 = - 26 5 . Khi đó B = 5. (x − 1) x + 26 5
Đáp án: C