K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

/x+1/+/x+2/+/x+3/+/x+4/

=(x+1)(x+2)(x+3)(x+4)

=(x+x+..+x)(1+2+3+4)

số số hạng của tổng là

(4-1):1+1=4

tổng của dãy là

(1+4).4:2=10

=>4x.10=0

=>4x=0=>x=0

Hâm hấp bánh bao cho nóng

7 tháng 8 2017

l x - 5 l + x - 5 = 0

l x -5 l = 5 -x

=>x-5=5-x => 2x=10 => x=5

=>x-5=-5+x => x=0

Vậy x= 0 hoặc 5

    Xét :  x  -  y = 2( x +y )

 =>   x  - y = 2x + 2y =>   x - 2x = 2y + y  => - x = 2y    ( 1 )

  Xét : x - y  = x : y 

 => = [ y + ( - x ) ] = x : y  => -  ( y + 2y  ) = x : y => - 3 y = x : y => x = - 3y2  = > - x = 3y2    ( 2 ) 

Từ ( 1 ) và ( 2 )  => 2y = 3y2  <=>  0

Mà y khác 0 vì y là số chia trong  x :y 

Vậy ko có cặp số  x ;  y nào thỏa mãn đề bài.

^^ Học tốt!                                                

19 tháng 6 2017

Xét x-y = 2x + 2y ,ta có:

=>(-x)=3y (1)... xét x-y=x/y,ta lại có:

\(\left(x-y\right)\times y=x\) (quy tắc nhân chéo 2 p/s bằng nhau)...từ đó suy ra:

\(xy-y^2=x\)nên :\(-\left(xy-y^2\right)=\left(-x\right)\)=> \(-xy+y^2=-x\)phá ngoặc nên đổi dấu...

thay (1) vào biểu thức ta có:  -xy+y2=3y hay y2-xy=3y

=>y(y-x)=3y suy ra y-x=3 nên y=3+x  (2);

Tù (1) và (2) ta có:   3y=3(3+x)= (-x)

hay 9+3x=(-x) nên => 9+3x-(-x)=0 => 9+4x=0 nên x=\(\frac{-9}{4}\)từ đó suy ra 

y=\(-\frac{\left(-\frac{9}{4}\right)}{3}\)=>y=\(\frac{9}{4}:3=>y=\frac{3}{4}\)

22 tháng 2 2018

Ta có: \(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\ge1\)

Dấu "=" xảy ra khi \(10⋮\left(4-x\right)\Leftrightarrow4-x\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Ta có bảng sau: 

4-x1-12-25-510-10
x3526-19-614

Vậy Pmin = 1 <=> x = {-6;-1;2;3;5;6;9;14}

22 tháng 2 2018

Ta có : 14 - x / 4-x  = 10 + 4-x / 4-x = 10/4  -  x + 4 - x / 4 - x=  ( 10/4 - x) + 1

Để cho ( 10/4 -x ) + 1 có được GTNN thì 10/4 - x phải đạt GTNN 

=>    4-x đạt GTNN    mà  -x < 0   =>    4-x  bé hơn hoặc bằng 4 

Vì 4-x bé hơn hoặc bằng 4 đạt GTNN 

=>    4-x = 4   =>   x= 0 

Thay vào biểu thức trên ta lại có : 

 14-0 /  4-0 = 14/4 = 3,5 

Vậy GTNN của P = 3,5    <=> ( khi và chỉ khi ) x= 0.

6 tháng 8 2017
    

Áp dụng bất đẳng thức |m|+|n||m+n| .Dấu = xảy ra khi m,n cùng dấu

A|xa+xb|+|xc+xd|=|2xab|+|c+d2x|

|2xab2x+c+d|=|c+dab|

Dấu = xảy ra khi xa và xb cùng dấu hay(xa hoặc xb)

                        xc và xd cùng dấu hay(xc hoặc xd)

                        2xab và c+d2x cùng dấu hay (x+b2xc+d)

Vậy Min A =c+d-a-b khi bxc


 
17 tháng 6 2017

234 + 456 = 690

=690 nha!
Kết bạn nha

6 tháng 8 2017

a)A=-|x-2|

Vì |x-2| \(\ge\)0 với mọi giá trị của x

=>-|x-2|\(\le\)0 với mọi giá trị của x

Vậy GTLN của biểu thức A là 0

Dấu "=" xảy ra khi |x-2|=0=>x-2=0 =>x=2

Vậy biểu thức A đạt GTLN là 0 khi x=2

b)B=-2+|1-x|

Vì|1-x|\(\ge\)0 với mọi x

   =>-2+|x-1|\(\ge\)-2

Vậy GTNN của biểu thức B là -2

Dấu "=" xảy ra khi |x-1|=0 =>x-1=0 =>x=1

Vậy biểu thức B đạt GTNN là -2 khi x=1

c)C=3-2|2-x|

Vì |2-x|\(\ge\)0 với mọi x

=> -|2-x|\(\le\)0 với mọi x

=>3-|2-x|\(\le\)3 với mọi x

Vậy GTLN của biểu thức C là 3

Dấu "=" xảy ra khi |2-x|=0 =>2-x=0 =>x=2

Vậy biểu thức C đạt GTLN là 3 khi x=2

\(a,\)\(A=-\left|x-2\right|\)

Ta có: \(\left|x-2\right|\ge0\)

\(\Rightarrow-\left|x-2\right|\le0\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy A lớn nhất = 0 tại \(x=2\)

\(b,\)\(B=-2+\left|1-x\right|\)

Ta có: \(\left|1-x\right|\ge0\)

\(\Rightarrow-2+\left|1-x\right|\ge-2\)

Dấu "=" xảy ra \(\Leftrightarrow1-x=0\Leftrightarrow x=1\)

Vậy B nhỏ nhất = -2 tại x=1

\(c,\)\(C=3-2\left|2-x\right|\)

Ta có: \(\left|2-x\right|\ge0\Rightarrow-2\left|2-x\right|\le0\)

\(\Rightarrow3-2\left|2-x\right|\le3\)

Dấu ''='' xảy ra \(\Leftrightarrow2-x=0\Leftrightarrow x=2\)

Vậy C lớn nhất = 3 tại x=2

14 tháng 10 2017

\(\left|x-\frac{1}{3}\right|+\frac{1}{2}=1\)  (1)

Ta có \(\left|x-\frac{1}{3}\right|=\hept{\begin{cases}x-\frac{1}{3}\Leftrightarrow x>\frac{1}{3}\\\frac{1}{3}-x\Leftrightarrow x< \frac{1}{3}\end{cases}}\)

với \(x>\frac{1}{3}\)thì (1) <=>\(x-\frac{1}{3}+\frac{1}{2}=1\)

\(\Leftrightarrow x=\frac{5}{6}\)(thoả mãn ĐK)

Với \(x< \frac{1}{3}\)thì (1)<=> \(\frac{1}{3}-x+\frac{1}{2}=1\)

\(\Leftrightarrow x=-\frac{1}{6}\)(TMĐK)