K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

\(...P=x^2-8x+16+x^2+2xy+y^2+2y^2-2y+2\)

\(P=\left(x-4\right)^2+\left(x+y\right)^2+2\left(y^2-y+1\right)\left(1\right)\)

Xét \(y^2-y+1=y^2-y+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\left(\left(y-\dfrac{1}{2}\right)^2\ge0\right)\)

\(\Rightarrow2\left(y^2-y+1\right)\ge2.\dfrac{3}{4}=\dfrac{3}{2}\)

mà \(\left(x-4\right)^2\ge0;\left(x+y\right)^2\ge0\)

\(\left(1\right)\Rightarrow P\ge\dfrac{3}{2}\Rightarrow Min\left(P\right)=\dfrac{3}{2}\)

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

AH
Akai Haruma
Giáo viên
28 tháng 7 2020

Lời giải:

Đặt $A=2x^2+2xy+3y^2-8x-2y+1$

$\Leftrightarrow 2x^2+2x(y-4)+(3y^2-2y+1-A)=0(*)$

Cội đây là PT bậc 2 ẩn $x$. $A$ tồn tại nghĩa là PT $(*)$ tồn tại nghiệm

$\Rightarrow \Delta'=(y-4)^2-2(3y^2-2y+1-A)\geq 0$

$\Leftrightarrow 2A\geq 5y^2+4y-14$

Mà $5y^2+4y-14=5(y+\frac{2}{5})^2-\frac{74}{5}\geq \frac{-74}{5}$

$\Rightarrow 2A\geq \frac{-74}{5}$

$\Rightarrow A\geq \frac{-37}{5}$

Vậy $A_{\min}=\frac{-37}{5}$

2x^2 + 3y^2 + 4xy - 8x - 2y + 18

= 2x^2 + 4xy - 8x +3y^2 - 2y + 18

=2( x^2 + 2xy -4x ) + 3y^2 - 2y +18

=2( x^2 + 2x( y - 2)) + 3y^2 - 2y + 18

=2(x + y - 2)^2 +3y^2 -2y +18 - 2(y - 2)^2

=2(x +y -2)^2 +3y^2 -2y +18- 2y^2 -8y -8

=2(x +y -2)^2 +y^2 - 10y + 10

Phần còn lại tự làm nhé

15 tháng 2 2017

c/ Ta có:\(6a-5b=1\)

\(\Rightarrow5b=6a-1\)

Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)

\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)

\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)

15 tháng 2 2017

còn câu a,b nữa a ơi :((

21 tháng 3 2018

Ta có:\(A=2x^2+3y^2+4xy-8x-2y+18\)

\(A=2\left(x^2+2xy+y^2\right)-8\left(x+y\right)+8+y^2+6y+9+1\)

\(A=2\left[\left(x+y\right)^2-4\left(x+y\right)+4\right]+\left(y+3\right)^2+1\)

\(A=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

\(\Rightarrow MINA=1\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\)

21 tháng 8

m666666

23 tháng 1 2016

ô sao ngu thế bài này mà ko biết

Bài làm

a) A = x2 + 2y2 - 6x + 8y + 25

A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8 

A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8 

Dấu " = " xảy ra <=> x = -3 ; y = -2.

Vậy AMin = 8 khi x = -3; y = -2

Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây, 

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)