Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)
\(=\left|2x-1\right|+\left| 3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
Dấu '=' xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(3-2x\right)>0\\\left(2x-1\right)\left(3-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\3-2x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\3-2x< 0\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}2x-1=0\\3-2x=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{1}{2}\\x< \frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{1}{2}\\x>\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\) là 2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
b) Ta có: \(Q=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)
\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)
\(=\left|7x-3\right|+\left|7x+3\right|\)
\(=\left|7x-3\right|+\left|-7x-3\right|\ge\left|7x-3-7x-3\right|=\left|-6\right|=6\)
Dấu '=' xảy ra khi \(\left(7x-3\right)\left(-7x-3\right)\ge0\)
\(\Leftrightarrow\frac{-3}{7}\le x< \frac{3}{7}\)
Vậy: ...
a) P=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
=\(\left|2x-1\right|+\left|2x-3\right|\)
=\(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
<=> \(P\ge2\)
Dấu "=" xảy ra <=> (2x-1)(3-2x)\(\ge0\)
<=> \(\frac{1}{2}\le x\le\frac{3}{2}\)
Vậy min P=2 <=>\(\frac{1}{2}\le x\le\frac{3}{2}\)
b)Tương tự ý a
\(a,\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=|2x-1|+|2x-3|\)
\(b,\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)
\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)
\(=|7x-3|+|7x+3|\)
=.= hok tốt!!
\(B=l7x-3l+l7x+3l\)
= \(l3-7xl+l7x+3l\) \(\ge l3-7x+7x+3l=6\)
Vậy GTNN là 6 khi -7/3 <= x <= 7/3
Câu 1:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=3
=>3-2x=3
=>x=0(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=3
=>1=3(loại)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=3
=>2x-3=3
=>2x=6
hay x=3(nhận)
Đề bài : Tìm Min của \(D=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)
Ta có ; \(D=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}=\sqrt{49\left(x-\frac{3}{7}\right)^2}+\sqrt{49\left(x+\frac{3}{7}\right)^2}=7\left(\left|x-\frac{3}{7}\right|+\left|x+\frac{3}{7}\right|\right)\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi a,b cùng dấu.
Được; \(D=7\left(\left|\frac{3}{7}-x\right|+\left|x+\frac{3}{7}\right|\right)\ge7.\left|\frac{3}{7}-x+x+\frac{3}{7}\right|=7.\frac{6}{7}=6\)
\(\Rightarrow D\ge6\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{3}{7}\ge0\\\frac{3}{7}-x\ge0\end{cases}\Leftrightarrow}\frac{-3}{7}\le x\le\frac{3}{7}\)
Vậy Min D = 6 \(\Leftrightarrow\frac{-3}{7}\le x\le\frac{3}{7}\)
Mình thấy đề bài hơi kì kì ^^
Ta có ; \(D=2\sqrt{49x^2-42x+9}=2\sqrt{49\left(x-\frac{3}{7}\right)^2}=14\left|x-\frac{3}{7}\right|\ge0\)
Do đó Min D = 0 \(\Leftrightarrow x=\frac{3}{7}\)
\(A=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)
\(A=\left|7x-3\right|+\left|7x+3\right|=\left|3-7x\right|+\left|7x+3\right|\)
\(A\ge\left|3-7x+7x+3\right|=6\)
\(A_{min}=6\) khi \(\left(3-7x\right)\left(7x+3\right)\ge0\Rightarrow-\frac{3}{7}\le x\le\frac{3}{7}\)
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)
\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)
CỘng theo vế 3 BĐT trên có:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
Khi x=y=z
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(..........................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
\(\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}=|1+2x|+|2x-3|=|1+2x|+|3-2x|>=|1+2x+3-2x|=4\)
=>p min=4
dau "="xay ra <=>(1-2x)(3-2x)>=0
=>x