Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\))
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)
\(\Leftrightarrow12\sqrt{x-1}=24\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)
\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=4+1\)
\(\Leftrightarrow x=5\left(tm\right)\)
b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))
\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)
\(\Leftrightarrow-4\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=4-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
\(a,\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=|2x-1|+|2x-3|\)
\(b,\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)
\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)
\(=|7x-3|+|7x+3|\)
=.= hok tốt!!
a) P=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
=\(\left|2x-1\right|+\left|2x-3\right|\)
=\(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
<=> \(P\ge2\)
Dấu "=" xảy ra <=> (2x-1)(3-2x)\(\ge0\)
<=> \(\frac{1}{2}\le x\le\frac{3}{2}\)
Vậy min P=2 <=>\(\frac{1}{2}\le x\le\frac{3}{2}\)
b)Tương tự ý a
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
1)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\\ A=\left|x-1\right|+\left|x+1\right|\\ A=\left|1-x\right|+\left|x+1\right|\ge\left|1-x+x+1\right|=2\)
dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x< 0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1\ge x\\x\ge-1\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}1< x\\x< -1\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
\(B=\sqrt{4x^2-12x+9}+\sqrt{4x^2+12x+9}\\ B=\left|2x-3\right|+\left|2x+3\right|\\ B=\left|3-2x\right|+\left|2x+3\right|\ge\left|3-2x+2x+3\right|=6\)
dấu " = " xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3-2x\ge0\\2x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x< 0\\2x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3\ge2x\\2x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}3< 2x\\2x< -3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{3}{2}\ge x\\x\ge-\dfrac{3}{2}\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}\dfrac{3}{2}< x\\x< -\dfrac{3}{2}\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
2)
\(A=\sqrt{x+4}+\sqrt{4-x}\\ A^2=x+4+4-x+2\sqrt{\left(x+4\right)\left(4-x\right)}\\ A^2=4+2\sqrt{16-x^2}\\ vìx^2\ge0nên\\ A^2\le12\\ A\le\sqrt{12}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le16\end{matrix}\right.\Rightarrow0\le x\le4\)
vậy...
\(B=\sqrt{x+6}+\sqrt{6-x}\\ B^2=x+6+6-x+2\sqrt{\left(x+6\right)\left(6-x\right)}\\ B^2=12+2\sqrt{36-x^2}\\ vì\: x^2\ge0nên\\ B^2\le24\\ B\le\sqrt{24}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le36\end{matrix}\right.\Rightarrow0\le x\le6\)
- có : \(\hept{\begin{cases}\left(a+b\right)^2=1\\\left(a-b\right)^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+2ab+b^2=1\\a^2-2ab+b^2\ge0\end{cases}\Leftrightarrow a^2+b^2\ge\frac{1}{2}}\) nên : \(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}+\frac{4}{a+b}=\frac{1}{2}+4=\frac{9}{2}\)\(P_{min}=\frac{9}{2}\Leftrightarrow a=b=\frac{1}{2}\)
Bài 1: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Lại có BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\left(a+b=1\right)\)
Cộng theo vế 2 BĐT trên có:
\(P=a^2+b^2+\frac{1}{a}+\frac{1}{b}\ge4+\frac{1}{2}=\frac{9}{2}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Bài 2: Áp dụng BĐT AM-GM ta có:
\(VT^2=\left(x-1\right)+\left(3-x\right)+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
\(\le2+\left(x-1\right)+\left(3-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\left(1\right)\). Lại có:
\(VP=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\left(2\right)\)
Từ (1);(2) xảy ra khi
\(VT=VP=2\Rightarrow\left(x-2\right)^2+2=2\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\) (thỏa)
Vậy x=2 là nghiệm của pt
a)\(ĐKXĐ:x\ge\frac{-1}{2}\)
\(\sqrt{x^2+4x+4}=2x+1\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)
\(\Leftrightarrow x+2=2x+1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là 1.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow2x-3=x-3\)
\(\Leftrightarrow2x=x\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy phương trình vô nghiệm
Câu 1:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=3
=>3-2x=3
=>x=0(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=3
=>1=3(loại)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=3
=>2x-3=3
=>2x=6
hay x=3(nhận)