Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)
\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)
Vậy GTNN là 8 đạt được tại x = 2
Cách 2:
\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)
\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)
Dấu = xảy ra khi x = 2
\(A=\frac{\left(x-9\right)+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)\(=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=2.5-4=6\)
Dấu'=' xảy ra khi và chỉ khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)
\(\Rightarrow\left(\sqrt{x}+3\right)^2=25\Rightarrow\sqrt{x}+3=5\left(do\sqrt{x}+3>0\right)\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
Vậy MinA=4 khi và chỉ khi x=4
\(A=x-\sqrt[]{x-3}+4\)
\(\Rightarrow A=x-3-\sqrt[]{x-3}+\dfrac{1}{4}-\dfrac{1}{4}-3+4\)
\(\Rightarrow A=\left(\sqrt[]{x-3}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
mà \(\left(\sqrt[]{x-3}-\dfrac{1}{2}\right)^2\ge0,\forall x\ge3\)
\(\Rightarrow A=\left(\sqrt[]{x-3}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi
\(\sqrt[]{x-3}-\dfrac{1}{2}=0\)
\(\Leftrightarrow\sqrt[]{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow x-3=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}+3\)
\(\Leftrightarrow x=\dfrac{13}{4}\)
Vậy \(GTNN\left(A\right)=\dfrac{3}{4}\left(tạix=\dfrac{13}{4}\right)\)
\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)
\(A=\left(x^2+5x+5\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x^2+5x+5=0\)
điều kiện \(x\ge0\)
ta có : \(P=\dfrac{16+x}{\sqrt{x}+3}\Leftrightarrow x-P\sqrt{x}+16-3P=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow P^2-4\left(16-3P\right)\ge0\Leftrightarrow P^2+12P-64\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}P\ge4\\P\le-16\end{matrix}\right.\) không có GTNN của P
Ta có BĐT : \(a.b\le\left(\frac{a+b}{2}\right)^2\forall a,b\). Do đó :
\(x^3.\left(16-x^3\right)\le\left(\frac{x^3+16-x^3}{2}\right)^2=\left(\frac{16}{2}\right)^2=64\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=16-x^3\)
\(\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy GTLN của \(x^3\left(16-x^3\right)\) là \(64\) khi \(x=2\)