K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

1: \(M=0\)

mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)

nên x-2021=0 và 2021-y=0

=>x=2021 và y=2021

4 tháng 4 2022

cảm ơn bạn nhiều nha

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

mik cần gấp mik sẽ 3 cái cho bn nào biết cách giải

28 tháng 9 2016

gtnn nghia la gi

28 tháng 9 2016

GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé