Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị nhỏ nhất là 0
vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
dấu bằng xảy ra khi
x - 2013 = 0
x-2014=0
x-2015=0
vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức
Gọi biểu thức trên là A
Ta thấy
A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:
/x-2013+2014-x/=/1/=1
Min A=1
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a;b\) Ta có :
\(\left|x-2013\right|+\left|x-2015\right|=\left|2013-x\right|+\left|x-2015\right|\ge\left|2013-x+x-2015\right|=2\)
\(\Rightarrow A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\ge2+\left|x-2014\right|\ge2\)có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2013-x\right)\left(x-2015\right)\ge0\\\left|x-2014\right|=0\end{cases}\Rightarrow x=2014\left(TM\right)}\)
Vậy GTNN của A là 2 tại x = 2014
áp dụng bđt về GTTĐ /x-2013/+/x-2015/=/x-2013/+/2015-x/\(\ge\)/x-2013+2015-x/=2
mà /x-2014/\(\ge0\)
nên A\(\ge2\)
dấu = xảy ra <=>x=2014
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015
Vậy GTNN của A = 2 tại x = 2015
\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge x-2014+0+2016-x=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)
có \(P=|2013-x|+|2014-x|\)
=\(|2013-x|+|x-2014|\)
\(\Rightarrow P\ge|2013-x+x-2014|=|-1|=1\)
\(\Rightarrow MinP=1\Leftrightarrow Dấu=xảyra\)\(\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)
\(\Leftrightarrow2013\le x\le2014\)
kb với mk nha!!!!!!!! ^_^ ^_^
\(P=\left|2013-x\right|+\left|2014-x\right|\)
\(P=\left|x-2013\right|+\left|2014-x\right|\)
Ta có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\\\left|2014-x\right|\ge2014-x\end{cases}}\Rightarrow P\ge x-2013+2014-x=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-2013\right|=x-2013\\\left|2014-x\right|=2014-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2013\ge0\\2014-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}\Leftrightarrow}2013\le x\le2014}\)
Vậy \(P_{min}=1\Leftrightarrow2013\le x\le2014\)
Tìm GTNN của biểu thức:
P=|2013−x|+|2014−x|
P=|x-2013|+|2014−x|
ÁP DỤNG: |A|+|B| >=|A+B|
=> |x-2013|+|2014−x|>=|x-2013+2014-x|
=> |x-2013|+|2014−x|>=1
Vậy P >= 1
Tự xét dấu = xảy ra
Vậy P min =1
Ta có: \(P=|2013-x|+|2014-x|=|2013-x|+|x-2014|\ge|2013-x+x-2014|=|-1|=1\)
\(\Rightarrow minP=1\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)
\(TH1:\hept{\begin{cases}2013-x\le0\\x-2014\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\Rightarrow2013\le x\le2014\)
\(TH2:\hept{\begin{cases}2013-x>0\\x-2014>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2013\\x>2014\end{cases}}\Rightarrow\)vô lý
Vậy \(minP=1\Leftrightarrow2013\le x\le2014\)
( min là GTNN )
\(2013\left|x+2015\right|+\left(x+2015\right)^2=2014\left|x+2015\right|\)
\(\Rightarrow2013\left|x+2015\right|+\left|x+2015\right|^2=2014\left|x+2015\right|\)
Đặt: \(\left|x+2015\right|=l\ge0\) khi đó phương trình trở thành:
\(2013l+l^2=2014l\)
\(\Rightarrow l^2=l\Leftrightarrow l^2=l=0\)
\(\Rightarrow l\left(l-1\right)=0\Rightarrow\left[{}\begin{matrix}l=0\\l=1\end{matrix}\right.\)
Với \(l=0\) ta có: \(\left|x+2015\right|=0\Leftrightarrow x=-2015\)
Với \(l=1\) ta có: \(\left|x+2015\right|=1\Leftrightarrow\left[{}\begin{matrix}x+2015=1\\x+2015=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2014\\x=-2016\end{matrix}\right.\)
\(A=\left|x-2013\right|+\left|2014-x\right|+\left|x-2015\right|\)
\(\Rightarrow A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\Rightarrow A\ge\left|x-2013+0+2015-x\right|\)
\(\Rightarrow A\ge2.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x=0\\x-2015\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\Rightarrow x=2014.\)
Vậy \(MIN_A=2\) khi \(x=2014.\)
Chúc bạn học tốt!
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{MIN}=2\)
Hình như bn làm sai rui Ace Legona ạ!!!!