\(A=\frac{x^2-2x+2013}{x^2}\)với x>0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

x- 2x + 2013 / x

x2 -2x + 1 + 2012 / x2

(x -1)2 + 2012/x2

(x -1)2/x+  2012/x2

GTNN là 2012/x khi (x -1)bàng 0 => x=1 ( khó viết :v)

5 tháng 8 2016

1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)

Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)

\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)

Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1

2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :

\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)

Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)

Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016

7 tháng 10 2016

x=2016

nhé bn

đúng ko vậy

bn mình

ko biết

7 tháng 8 2016
  • \(A=\frac{x^2+2x+3}{x+1}=\frac{\left(x^2+2x+1\right)+2}{x+1}=\frac{\left(x+1\right)^2+2}{x+1}=\left(x+1\right)+\frac{2}{x+1}\)

Áp dụng bđt Cauchy : \(x+1+\frac{2}{x+1}\ge2.\sqrt{\left(x+1\right).\frac{2}{x+1}}=2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x>-1\\x+1=\frac{2}{x+1}\end{cases}\Leftrightarrow}x=\sqrt{2}-1\)

Vậy Min A = \(2\sqrt{2}\)tại \(x=\sqrt{2}-1\)

  • B không tìm được GTNN
26 tháng 8 2017

Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.

Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:

- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.

- Vẽ đường thẳng EF.

- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD,

BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho

0

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

6 tháng 11 2016

Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\)\(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :

\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)

Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)

25 tháng 11 2016

A-2=\(\left(\sqrt{x-y}-\sqrt{\frac{2}{x-y}}\right)^2+2\sqrt{2}\)

A>=2\(\left(1+\sqrt{2}\right)\)

dang thuc xay ra khi

x-y=\(\sqrt{2}\)

25 tháng 11 2016

chua hieu nhan tin