Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+2y^2+2xy+2x-4y+2018\)
\(A=\left(x+y\right)^2+2\left(x+y\right)+1+y^2-6y+9+2008\)
\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2008\)
\(\ge2008\)
Dấu "=" xảy ra tại \(y=3;x=-4\)
Ủa.Ai t i c k sai e thek ạ.Nếu sai thì nói rõ ra để em còn biết sửa được ko ạ.Im im thế này thì ko hay đâu ạ
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(A=\frac{1}{2017}-\frac{2}{2017x}+\frac{1}{x^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{1}{2017}-\frac{1}{2017^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{2016}{2017^2}\)
\(\Rightarrow A\ge\frac{2016}{2017^2}\)Dấu "=" xảy ra khi \(\left(\frac{1}{2017}-\frac{1}{x}\right)^2=0\Rightarrow x=2017\)
Vây ......
Tìm GTNN của : \(x^2-4x+3\)
\(x^2-4x+3=x^2-4x+4-1=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2-1\ge-1\)
Vậy GTNN của biểu thức là -1 . Dấu bằng xảy ra khi x = 2
2) \(\left(2x-1\right)\left(x+5\right)-3.\left(x-2\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=2x^2+10x-x-5-3.\left(x^2-4x+4\right)+x^2-16\)
\(=2x^2+9x-5-3x^2+12x-12+x^2-16=21x-33\)
Khi x = -2 thì A = 21 . (-2) -33 = -75
a: =x^2-10x+25+y^2+2y+1
=(x-5)^2+(y+1)^2>=0
Dấu = xảy ra khi x=5 và y=-1
b: x^2-3x-2
=x^2-3x+9/4-17/4
=(x-3/2)^2-17/4>=-17/4
Dấu = xảy ra khi x=3/2
\(B=\frac{x^2-2x+2018}{2018x^2}\)
\(=\frac{1}{2018}-\frac{2}{2018x}+\frac{1}{x^2}\)
\(=\left(\frac{1}{x}-\frac{1}{\sqrt{2018}}\right)^2\ge0\)
Vậy giá trị nhỏ nhất \(B=0\)khi và chỉ khi \(\frac{1}{x}-\frac{1}{\sqrt{2018}}=0\)
\(\Rightarrow\frac{1}{x}=\frac{1}{\sqrt{2018}}\)
\(\Rightarrow x=\sqrt{2018}\)
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\) và \(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :
\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)
Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)