Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{a}{b}+\frac{a}{c}\right)\ge9\)
Trong đó: a=xy; b=yz; c=zx
\(\Rightarrow\left(xy+yz+zx\right)\left(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge9\)(*)
Áp dụng BĐT Cô-si
\(x^2+y^2\ge2xy\left(x>0;y>0\right)\left(1\right)\)
\(y^2+z^2\ge2yz\left(y>0;z>0\right)\left(2\right)\)
\(z^2+x^2\ge2xz\left(x>0;z>0\right)\left(3\right)\)
Cộng từng vế của (1);(2);(3) ta được: \(x^2+y^2+z^2\ge xy+yz+zx\)(**)
Từ (*);(**)
\(\Rightarrow\left(x^2+y^2+z^2\right)\cdot A\ge\left(xy+yz+zx\right)\cdot A\ge9\)
\(\Rightarrow3A\ge9\)
\(\Rightarrow A\ge3\)
\(\Rightarrow MinA=3\Leftrightarrow x=y=z\)
Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:
\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).
\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)
\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).
Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).
Do đó x = 0.
Kết hợp với x + y + z = 2010 thì y + z = 2010.
Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.
Vậy...
Đề bị sai kia bạn biểu thức thứ 3 đó
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) (bạn xem trên mạng đi có đó từ bđt cô si mà ra ) ta có:
\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
(vì \(xy+yz+zx\le x^2+y^2+z^2\le3\))
Vậy Min P = 3/2 khi x=y=z=1
\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)
Với x,y là số thực lớn hơn 0,13 ta có:
\(\left(xy+yz+zx\right)^2\)
\(=\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2+2xyyz+2xyzx+2yzzx\)
Vì x,y,z đều là số thực dương lớn hơn 0 nên:
\(\left(xy\right)^2,\left(yz\right)^2,\left(zx\right)^2,2xyyz,2xyzx,2yzzx\) đều lớn hơn 0
Vậy \(\left(xy+yz+zx\right)^2>0\)
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\)
\(\ge\dfrac{9}{3+x^2+y^2+z^2}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)