K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Áp dụng BĐT
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{a}{b}+\frac{a}{c}\right)\ge9\)

Trong đó: a=xy; b=yz; c=zx

\(\Rightarrow\left(xy+yz+zx\right)\left(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge9\)(*)

Áp dụng BĐT Cô-si

\(x^2+y^2\ge2xy\left(x>0;y>0\right)\left(1\right)\)

\(y^2+z^2\ge2yz\left(y>0;z>0\right)\left(2\right)\)

\(z^2+x^2\ge2xz\left(x>0;z>0\right)\left(3\right)\)

Cộng từng vế của (1);(2);(3) ta được: \(x^2+y^2+z^2\ge xy+yz+zx\)(**)

Từ (*);(**)

\(\Rightarrow\left(x^2+y^2+z^2\right)\cdot A\ge\left(xy+yz+zx\right)\cdot A\ge9\)

\(\Rightarrow3A\ge9\)

\(\Rightarrow A\ge3\)

\(\Rightarrow MinA=3\Leftrightarrow x=y=z\)

25 tháng 2 2020

Quỳnh Mơn you nhìu nha ! May quá

26 tháng 12 2016

Ta có

\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(=\left(\frac{1}{x^2+y^2+z^2}+\frac{\frac{4}{9}}{2xy}+\frac{\frac{4}{9}}{2yz}+\frac{\frac{4}{9}}{2zx}\right)+\frac{7}{9}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\ge\frac{\left(1+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{9}.\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{9}.\frac{9}{\frac{\left(x+y+z\right)^2}{3}}\)

\(=9+\frac{7}{9}.27=30\)

Vậy GTNN là 30 đạt được khi \(x=y=z=\frac{1}{3}\)

26 tháng 12 2016

lớp mấy

25 tháng 1 2016

mình cũng bó tay  

25 tháng 1 2016

bạn giải dùm mink đi rồi mình tick cho

 

5 tháng 12 2017

bài này esay thôi:

ta có \(x+y+z\le3\Leftrightarrow\left(x+y+z\right)^2\le9.\)

Ta lại có:\(\left(x+y+z\right)^2\ge3\left(xy+zx+zy\right)\)

\(\Leftrightarrow9\ge3\left(xy+yz+xz\right)\Leftrightarrow3\ge xy+xz+yz\)

Ta có:

\(VT=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+zx+zy}+\frac{1}{xy+yz+xz}+\frac{2010}{xy+xz+yz}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2010}{xy+yz+xz}\)\(\ge\frac{9}{3^2}+\frac{2010}{3}=1+670=671\left(đpcm\right).\)

Dấu = xay ra khi \(x=y=z=1\)

5 tháng 12 2017

Cho mình hỏi lầu trên cái, esay là gì thế? Bạn đánh nhầm từ easy phải không?

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy

18 tháng 9 2018

bạn làm đk câu này chưa ạ 
nếu làm dk oy chỉ mik cách làm vs ạ

5 tháng 3 2019

\(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)

\(P=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)

\(P\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)