K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(x+y=1\Rightarrow y=1-x\)

\(A=3x^2+5x+14=3\left(x+\frac{5}{6}\right)^2+\frac{143}{12}\ge\frac{143}{12}\forall x\in R\)

vậy \(A_{min}=\frac{143}{12}\) khi \(x=-\frac{5}{6}\)

NV
12 tháng 7 2021

\(M=\dfrac{5}{x}+\dfrac{1}{5y}=\dfrac{1}{5}\left(\dfrac{25}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{5}.\dfrac{\left(5+1\right)^2}{x+y}=\dfrac{72}{5}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{5}{12};\dfrac{1}{12}\right)\)

12 tháng 7 2021

Theo bđt nào mà ra dấu.>= thế?

 

 

26 tháng 8 2015

x+y=5

<=>2(x+y)=2*5

<=>2x+2y=10

Mà 2x+5y=19

=>2x+5y-2x-2y=19-10

<=>3y=9

<=>y=3

Thay vào x+y=5

=>x=2

Vậy:...

1 tháng 2 2018

1)

\(2x^2-2xy+5y^2-2x-2y+1=0.\)

\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(x^2-4xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(2y-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y-1=0\\2y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\2y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1}{3}\\x=\frac{2}{3}\end{cases}}}\)

14 tháng 8 2020

\(A=\left(x^3+y^3+xy\left(x+y\right)\right)-xy\left(x+y\right)+xy\)

=>    \(A=\left(x+y\right)\left(x^2+y^2\right)-xy.1+xy\)

=>   \(A=x^2+y^2-xy+xy\)

=>    \(A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)

DẤU "=" XẢY RA <=>    \(x=y\). MÀ    \(x+y=1\)

=> A min \(=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\).

14 tháng 8 2020

\(B=x^2-2x+1+x^2-6x+9\)

=>   \(B=2x^2-8x+10\)

=>   \(B=2\left(x^2-4x+4\right)+2\)

=>   \(B=2\left(x-2\right)^2+2\)

CÓ:    \(2\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2+2\ge2\)

=>   \(B\ge2\)

DẤU "=" XẢY RA <=>    \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)

VẬY B MIN = 2 <=>    \(x=2\)

20 tháng 12 2023

a: Tọa độ đỉnh của (P): y=x2-mx+2 là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-m\right)}{2}=\dfrac{m}{2}\\y=-\dfrac{\left(-m\right)^2-4\cdot1\cdot2}{4}=-\dfrac{m^2-8}{4}\end{matrix}\right.\)

Vì a=1>0

nên hàm số đồng biến khi \(x>\dfrac{m}{2}\)

b: Vì a=1>0 nên giá trị nhỏ nhất của hàm số \(y=x^2-mx+2\) là tung độ đỉnh của đồ thị

=> \(y_{min}=-\dfrac{m^2-8}{4}\)

c: \(y_{min}=1\)

=>\(-m^2+8=4\)

=>-m2=-4

=>m2=4

=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)