Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bỏ dấu giá trị tuyệt đối:
x \(\le\) 2008 | 2008 < x < 2009 | 2009 \(\le\) x < 2010 | 2010\(\le\)x < 2011 | x \(\ge\) 2011 | |
|x- 2008| | 2008-x | x-2008 | x-2008 | x-2008 | x-2008 |
|x-2009| | 2009-x | 2009-x | x-2009 | x-2009 | x-2009 |
|x-2010| | 2010-x | 2010 - x | 2010 - x | x - 2010 | x - 2010 |
|x-2011| | 2011 - x | 2011 - x | 2011 - x | 2011 - x | x - 2001 |
=>
+) Nếu x \(\le\) 2008 => A = 2008 - x + 2009 - x + 2010 - x + 2011 - x + 2008 = 10 046 - 4x \(\ge\) 10 046 - 4.2008 = 2014
+) Nếu 2008 < x < 2009 => A = x - 2008 + 2009 - x + 2010 - x + 2011 - x + 2008 = 6030 - 2x > 6030 - 2.2009 = 2012
+) Nếu 2009 \(\le\) x < 2010 => A = x - 2008 + x - 2009 + 2010 - x + 2011 - x + 2008 = 2012
+) Nếu 2010 \(\le\) x < 2011 => A = x - 2008 + x - 2009 + x - 2010 + 2011 - x + 2008 = 2x - 2008 \(\ge\) 2.2010 - 2008 = 2012
+) Nếu x \(\ge\) 2011 => A = x - 2008 + x - 2009 + x - 2010 + x - 2011 + 2008 = 4x - 6030 \(\ge\) 4.2011 - 6030 = 2014
Từ các trường hợp trên => A nhỏ nhất bằng 2012 khi x = 2009 ; hoặc x = 2010
\(A=\left|x-2023\right|+\left|x-2010\right|+1\)
=>\(A=\left|x-2023\right|+\left|2010-x\right|+1\)
=>\(A>=\left|x-2023+2010-x\right|+1=13+1=14\)
Dấu '=' xảy ra khi \(\left(x-2023\right)\left(x-2010\right)< =0\)
=>2010<=x<=2023
Ta có \(\left(x-\dfrac{2}{7}\right)^{2008}\ge0\) với mọi x
\(\left(0,2-\dfrac{1}{5}y\right)^{2010}\ge0\) với mọi y
\(\left(-1\right)^{200}=1\)
\(\Rightarrow N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}+\left(-1\right)^{200}\ge1\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{2}{7}\right)^{2008}=0\\\left(0,2-\dfrac{1}{5}y\right)^{2010}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\0,2-\dfrac{1}{5}y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\\dfrac{1}{5}y=0,2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
Vậy Nmin = 1 \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
\(N=\left(x-\dfrac{2}{7}\right)^{2008}+\left(0,2-\dfrac{1}{5}y\right)^{2010}-1\ge-1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{7}=0\\\dfrac{1}{5}-\dfrac{1}{5}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
\(\left|x-2010\right|+\left|x-2012\right|=\left|x-2010\right|+\left|x-2012\right|\ge\left|x-2010-x+2012\right|=2\)
\(\left|x-2011\right|\ge0\)
=> \(B\ge2\)
dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2010\right).\left(-x+2012\right)\ge0\\x=2011\end{cases}}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow x=2011}\)
c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ