K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=-\left(4x^2-4x-15\right)\)

\(=-\left(4x^2-4x+1-16\right)\)

\(=-\left(2x-1\right)^2+16< =16\)

Dấu = xảy ra khi x=1/2

\(D=x^2-4x+3+21\)

\(=x^2-4x+4+20=\left(x-2\right)^2+20>=20\)

Dấu '=' xảy ra khi x=2

6 tháng 11 2018

b,2x.(x-5)-x.(3+2x)=26

2x2 - 10x - 3x - 2x2 = 26

-13x = 26

x = -2

c, (x+7)2-x.(x-3)=12

x2 +14x +49 - x2 + 3x = 12

17x + 49 = 12

17x = - 37

x = \(\dfrac{-37}{17}\)

d, 9( x -2018) - x+ 2018 =0

9( x -2018) - (x -2018) = 0

( 9-1)(x -2018) = 0

8( x -2018) = 0

x -2018 = 0

x = 2018

17 tháng 11 2022

a: =>2x+10-x^2-5=0

=>-x^2+2x+5=0

=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)

e: =>4x^2+4x+9x^2-4=15

=>13x^2+4x-19=0

=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)

31 tháng 8 2015

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0 

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52 

=> 19x = -4

=> x = -4/19

d/ 20x2 - 16x - 34 = 10x2 + 3x - 34

=> 10x2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 

hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10

Vậy x = 0 ; x = 19/10

2 tháng 1 2016

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52

=> 19x = -4

=> x = -4/19

d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34

=> 10x 2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 hoặc 10x - 19 = 0

=> 10x = 19

=> x = 19/10

Vậy x = 0 ; x = 19/10 

18 tháng 10 2016

đơn giản wá 

8 tháng 7 2019

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

7 tháng 7 2019

a) 4x - 2x + 3 - 4x.(x - 5) = 7x - 3

--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3

--> 11x = -6

--> x = \(\frac{-6}{11}\)

b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x

--> -3x2 + 15x + 5x - 5 + 3x2 = 4x

--> -3x + 15x + 5x + 3x2 - 4x = 5 

--> 16x = 5

--> x = \(\frac{5}{16}\)

c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3

--> 7x2 - 14x - 5x + 5 = 7x2 + 3 

--> 7x - 14x - 5x - 7x2  = -5 + 3 

--> -19x = -2 

--> x = \(\frac{2}{19}\)

d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7

--> 15x - 3 - x2 + 2x + x2 - 13x = 7

--> 15x - x2 + 2x + x2 - 13x = 3 + 7

--> 4x = 10

--> x = \(\frac{5}{2}\)

e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12

--> 2x2 - 3x - 2x2 + 10x = 12

--> 7x = 12

--> x = \(\frac{12}{7}\)

~ Học tốt ~

4 tháng 7 2019

a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3

=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

=> 18x + 3 = 7x - 3

=> 18x - 7x = -3 - 3

=> 11x = -6

=>  x = -6/11

b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x

=> -3x2 + 15x + 5x - 5 + 3x2 = 4x

=> 20x - 5 = 4x

=> 20x - 4x = 5

=> 16x = 5

=> x = 5/16

\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)

\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)

\(\Leftrightarrow7x^2-7x^2-19x=3-5\)

\(\Leftrightarrow-19x=-2\)

\(\Leftrightarrow x=\frac{2}{19}\)

2 tháng 9 2018

\(x^2+3x+2\)

\(=x^2+x+2x+2\)

\(=x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x+2\right)\)

15 tháng 12 2022

a: =-x^2+6x-4

=-(x^2-6x+4)

=-(x^2-6x+9-5)

=-(x-3)^2+5<=5

Dấu = xảy ra khi x=3

b: =3(x^2-5/3x+7/3)

=3(x^2-2*x*5/6+25/36+59/36)

=3(x-5/6)^2+59/12>=59/12

Dấu = xảy ra khi x=5/6

c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)

\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)

\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)

Dấu = xảy ra khi x=4 hoặc x=2