K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

\(A=\dfrac{3\left(\sqrt{x}+1\right)-2}{2\left(\sqrt{x}+1\right)}=\dfrac{3}{2}-\dfrac{1}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{1}{\sqrt{x}+1}\ge-1\)

\(\Leftrightarrow A\ge\dfrac{3}{2}-1=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow x=0\)

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)

a: \(\left(x^2-3\right)\left(2x^2-\dfrac{9}{8}\right)\left(\sqrt{\left|x\right|}-\sqrt{\dfrac{5}{2}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=0\\2x^2-\dfrac{9}{8}=0\\\sqrt{\left|x\right|}-\sqrt{\dfrac{5}{2}}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=3\\x^2=\dfrac{9}{16}\\\left|x\right|=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow x\in\left\{-\sqrt{3};\sqrt{3};\dfrac{3}{4};-\dfrac{3}{4};\dfrac{-5}{2};\dfrac{5}{2}\right\}\)

b: \(x-5\sqrt{x}=0\)(ĐKXĐ: x>=0)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)

=>x=0 hoặc x=25

26 tháng 10 2016

Mình cần gấp lắm, giúp mình với !!!!

26 tháng 10 2016

1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)

dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0

13 tháng 8 2018

a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)

b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)

c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)

d)\(x^2=7vớix< 0\)

\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)

e)\(x^2-4=0với>0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)

f)\(\left(2x+7\sqrt{7}\right)^2=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)

\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)

\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)

\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)

13 tháng 8 2018

a) \(\sqrt{x}=4\Rightarrow x=16\)

b) \(\sqrt{x-2}-3\\ \Rightarrow x-2=9\\ \Rightarrow x=11\)

c) \(x^2=7\\ \Rightarrow x=\pm\sqrt{7}\\ Vớix< 0\Rightarrow x=-\sqrt{7}\)

d) \(x^2-4=0\\\Rightarrow x=\pm2\\ Vớix>0\Rightarrow x=2 \)

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

19 tháng 3 2017

\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)

\(A^{2n}\ge0\forall A\)

\(-A^{2n}\le0\forall A\)

19 tháng 3 2017

\(\left|A\right|\ge0\forall A\)

\(-\left|A\right|\le0\forall A\)

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)

11 tháng 7 2018

a) ĐKXĐ: \(x\ge-\sqrt{2}\)

Ta có: \(\sqrt{x+\sqrt{2}}\ge0\Rightarrow-\sqrt{x+\sqrt{2}}\le0\)

\(\Rightarrow A=1-\sqrt{x+\sqrt{2}}\le1\)

Vậy: GTLN của A là 1 khi \(\sqrt{x+\sqrt{2}}=0\Leftrightarrow x=-\sqrt{2}\)

b) ĐKXĐ: \(x\ge-2\)

Ta có: \(\sqrt{x+2}\ge0\)

\(\Rightarrow B=\sqrt{x+2}+\dfrac{1}{5}\ge\dfrac{1}{5}\)

Vậy: GTNN của B là \(\dfrac{1}{5}\)khi \(\sqrt{x+2}=0\Leftrightarrow x=-2\)

11 tháng 7 2018

Không có gì, nếu bài làm có vấn đề gì thì bạn góp ý cho mình nha!

a) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow x=\left(\sqrt{7}\right)^2\)

b) \(5\sqrt{x}+1=40\)

\(\Rightarrow5\sqrt{x}=39\)

\(\Rightarrow\sqrt{x}=7,8\)

\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)

c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{x}=1,2\)

\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)

d) \(4x^2-1=0\)

\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(\sqrt{x+1}-2=0\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Rightarrow x+1=1,414\)

\(\Rightarrow x=0,414\)

f) \(2x^2+0,82=1\)

\(\Rightarrow2x^2=0,18\)

\(\Rightarrow x^2=0,09\)

\(\Rightarrow x=\pm0,3\)

g) Không có kết quả