Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left|x-2013\right|+\left|2014-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2013\right|+\left|2014-x\right|\ge\left|x-2013+2014-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x\le2014\end{matrix}\right.\Rightarrow2013\le x\le2014.\)
Vậy \(MIN_A=1\) khi \(2013\le x\le2014.\)
Chúc bạn học tốt!
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
a) ĐKXĐ: \(x\ge-\sqrt{2}\)
Ta có: \(\sqrt{x+\sqrt{2}}\ge0\Rightarrow-\sqrt{x+\sqrt{2}}\le0\)
\(\Rightarrow A=1-\sqrt{x+\sqrt{2}}\le1\)
Vậy: GTLN của A là 1 khi \(\sqrt{x+\sqrt{2}}=0\Leftrightarrow x=-\sqrt{2}\)
b) ĐKXĐ: \(x\ge-2\)
Ta có: \(\sqrt{x+2}\ge0\)
\(\Rightarrow B=\sqrt{x+2}+\dfrac{1}{5}\ge\dfrac{1}{5}\)
Vậy: GTNN của B là \(\dfrac{1}{5}\)khi \(\sqrt{x+2}=0\Leftrightarrow x=-2\)
Không có gì, nếu bài làm có vấn đề gì thì bạn góp ý cho mình nha!
a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)
TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)
TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)
TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)
TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)
TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)
TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x
Vậy:...
Mình cần gấp lắm, giúp mình với !!!!
1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)
dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0