Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = x2 - x + 2
=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
A = x2 - x + 2 = x2 - 2.x.1 + 12 + 1 = ( x+1)2 + 1
Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)
=> ( x+1)2 + 1 \(\ge\)1 khi với mọi x)
Dấu "=" xảy ra khi ( x+1)2 = 0
=> x + 1 = 0 -> x= -1
Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
\(A=2x^2+10x-1=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
=> Min A \(=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
\(B=5x^2-x=5\left(x-\frac{1}{10}\right)^2-\frac{1}{20}\ge-\frac{1}{20}\)
=> Min B \(=-\frac{1}{20}\Leftrightarrow x=\frac{1}{10}\)
A= 5x-x2= -x2+5x = -(x2-5x+25/4-25/4)= -(x-5/2)2+25/4
vì -(x-5/2)2< hoặc = 0 vs mọi x
nên - (x-5/2)+25/4< hoặc =25/4
dấu bằng xảy ra khi và chỉ khi x-5/2=0
=> x=5/2
câu b tg tự đặt dấu trừ ra ngoài rồi tách 11= 9+2 là ra giá trị lớn nhất của B=-2 tại x=3
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)
c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)
b: ta có: \(-x^2+5x+4\)
\(=-\left(x^2-5x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)
Vì: \(\left(x-2\right)^2\ge0\)
=> \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x=2
\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)
Vì: \(2\left(x+3\right)^2\ge0\)
=> \(2\left(x+3\right)^2-19\ge-19\)
Vậy GTNN của B là -19 khi x=-3
\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.
giá trị lớn nhất bằng 3 nhé .
- x 2 + 5x+ 3 = -x2 -5x - 25/4 +37/4 =-(x2 - 5x + 25/4) + 37/4 = -( x- 5/2) 2 +37 /4
Ma -(x-5/2)2 luon nho hon hoac bang 0
vay GTLN cua bieu thuc la 37/4 khi x = 5/2