K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

\(A=\frac{-2018}{x^2-10x+2012}\)

ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)

dấu = xảy ra khi x-5=0

=> x=5

vì tử thức âm  mà mẫu thức luôn lớn hơn 0

=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất

khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5

31 tháng 12 2016

\(\left(x-2\right)^2\ge0\) đẳng thức khi x=2

\(5.\left(x-2\right)^2\ge0\)đẳng thức khi x=2

\(5.\left(x-2\right)^2+1\ge1\)đẳng thức khi x=2

Vậy GTNN A là 1 khi x=2

31 tháng 12 2016

ta có 5(x-2)\(\ge\)\(\forall\)x

suy ra  5(x-2)2 + 1 \(\ge\)1  \(\forall\)x

Dấu "=" xảy ra khi x-2=0

     \(\Leftrightarrow\)         x=2

Vậy GTNN của C là 1 khi x=2

20 tháng 4 2018

a/ Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2+5x\ge0\)với mọi giá trị của x

=> \(x^2+5x-17\ge0-17=-17\)với mọi giá trị của x.

Dấu "=" xảy ra khi \(x^2+5x=0\)

=> \(x\left(x+5\right)=0\)

=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy f (x) có GTNN là -17 khi \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\).

11 tháng 2 2022

\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)

Dấu ''='' xảy ra khi x = -1/2 

Vậy GTLN của Q là 2021 khi x = -1/2 

\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN của C là 2 khi x = 2 

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...