Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
Đặt \(A=-3x^2+2x-1\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-3\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\)
Ta có: \(-3\left(x-\dfrac{1}{3}\right)^2\le0\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le\dfrac{-2}{3}\)
Dấu " = " xảy ra khi \(-3\left(x-\dfrac{1}{3}\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(MAX_A=\dfrac{-2}{3}\) khi \(x=\dfrac{1}{3}\)
Ta có : A = x2 - x + 2
=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
A = x2 - x + 2 = x2 - 2.x.1 + 12 + 1 = ( x+1)2 + 1
Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)
=> ( x+1)2 + 1 \(\ge\)1 khi với mọi x)
Dấu "=" xảy ra khi ( x+1)2 = 0
=> x + 1 = 0 -> x= -1
Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1
\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)
\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)
Dấu ''='' xảy ra khi x = 3/4
Vậy GTNN của A bằng 7/8 tại x = 3/4
B=y^2-y+1
=y^2-2*y*1/2+1/4+3/4
=(y-1/2)^2+3/4>=3/4
Dấu = xảy ra khi y=1/2
E=-x^2+x+2
=-(x^2-x-2)
=-(x^2-x+1/4-9/4)
=-(x-1/2)^2+9/4<=9/4
Dấu = xảy ra khi x=1/2
\(A=x^2-3x+2\)
\(\Leftrightarrow A=x^2-3x+\dfrac{9}{4}-\dfrac{1}{4}\)
\(\Leftrightarrow A=\left[x^2-2.x\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]-\dfrac{1}{4}\)
\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)
Vậy GTNN của \(A=\dfrac{-1}{4}\) khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
A=3x - 3x2 -1
⇔x + 2x -2x2 - x2 - 2 + 1
⇔(x - 2x2 +1) +(2x-2)
⇔(x-1)2 +2(x-1)
⇔(x-1)(x-1+2)
⇔(x-1)(x+1)
⇔ x2 -1 ≥-1
dấu "=" xảy ra khi
x2 =0 ⇔ x =0
vậy MinA= -1 khi x =0
\(3x-3x^2-1=-3\left(x^2-x+\dfrac{1}{3}\right)=-3\left(x^2-2x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{3}\right)=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)Ta có
\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{2}\right)\le0\Rightarrow-3\left(x-\dfrac{1}{2}\right)-\dfrac{1}{4}\le-\dfrac{1}{4}\)
Vậy Amin=\(-\dfrac{1}{4}\) đạt được khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Nếu sai thì thui nhé tại mình mới hk