K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Do \(x+y+z=0;-1\le x,y,z\le1\)

Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu

Giả sử : \(x\ge0;y\ge0;z\le0\)

Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)

\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)

\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)

Vậy : \(x^2+y^4+z^6\le2\)

20 tháng 2 2020

 \(\text{A=|x| - |x-2| }\le|x-x+2|=2\)

=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)

NV
5 tháng 8 2021

\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)

\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)

\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)

Ai giải trước mk mỗi ngày 3 cái . k hết 7 ngày nha 

11 tháng 2 2020

vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó

chúc học tốt !