Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x+y+z=0;-1\le x,y,z\le1\)
Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu
Giả sử : \(x\ge0;y\ge0;z\le0\)
Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)
\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)
\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)
Vậy : \(x^2+y^4+z^6\le2\)
Ta có:
\(-1\le x\le1;-1\le y\le1;-1\le z\le1\Leftrightarrow x^2;y^2;z^2\le1\) (1)
Trong 3 số \(x;y;z\)có ít nhất 2 số cùng dấu(giả xử là \(x;y\)) ta có: \(xy\ge0\Rightarrow2xy\ge0\)(2)
\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\le x^2+y^2+z^2\)(3)
ta sẽ chứng minh:
\(x^2+y^2+z^2\le2\) ta có:
\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy\)(từ (2) )
\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)(từ (1) )
\(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right)\)(từ (3) )
Ta có:
−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)
Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)
x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)
ta sẽ chứng minh:
x2+y2+z2≤2 ta có:
x2+y2+z2≤x2+y2+z2+2xy(từ (2) )
⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1) )
⇒x2+y4+z6≤2(đpcm)(từ (3) )
..
b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt
Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)
Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)
Dấu = xảy ra khi x = 0; y = 1; z = - 1.
Vì \(x+y+z=0.\)
\(\Rightarrow x+y=-z.\)
Ta có:
\(-1\le x\le1;-1\le y\le1;-1\le z\le1.\)
\(\Leftrightarrow x^2;y^2;z^2\le1\)
Trong 3 số x ; y ; z có ít nhất 2 số cùng dấu (giả sử là x ; y). Ta có:
\(xy\ge0\)
\(\Rightarrow2xy\ge0\)
Có:
\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\)
\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\) (1).
Ta phải chứng minh \(x^2+y^2+z^2\le2.\)
Có:
\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy.\)
\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right).2+z^2\)
\(\Rightarrow x^2+y^2+z^2\le\left(-z\right).2+z^2\)
\(\Rightarrow x^2+y^2+z^2\le2z^2\le2\) (2).
Từ (1) và (2) \(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right).\)
Chúc em học tốt!
Lời giải:
Vì $0\leq x\leq y\leq z\leq 1\Rightarrow 0\leq xy\leq xz\leq yz$
$\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq \frac{x+y+z}{xy+1}(1)$
Xét $\frac{x+y+z}{xy+1}-2=\frac{x+y+z-2xy-2}{xy+1}=\frac{(x-1)(1-y)+(z-xy-1)}{xy+1}\leq 0$ do $0\leq x\leq y\leq z\leq 1$)
$\Rightarrow \frac{x+y+z}{xy+1}\leq 2(2)$
Từ $(1);(2)\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq 2$ (đpcm)
Ai giải trước mk mỗi ngày 3 cái . k hết 7 ngày nha
vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó
chúc học tốt !