\(0\le x\le y\le z\le1\) chứng minh \(\frac{x}{yz+1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 2 2020

Lời giải:

Vì $0\leq x\leq y\leq z\leq 1\Rightarrow 0\leq xy\leq xz\leq yz$

$\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq \frac{x+y+z}{xy+1}(1)$

Xét $\frac{x+y+z}{xy+1}-2=\frac{x+y+z-2xy-2}{xy+1}=\frac{(x-1)(1-y)+(z-xy-1)}{xy+1}\leq 0$ do $0\leq x\leq y\leq z\leq 1$)

$\Rightarrow \frac{x+y+z}{xy+1}\leq 2(2)$

Từ $(1);(2)\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq 2$ (đpcm)

1 tháng 2 2020

Bài này mà lớp 7 á? Nguyễn Thiện Nhân

3 tháng 3 2018

Ta có:

\(0\le x\le y\le z\le1\Leftrightarrow\left(1-x\right)\left(1-y\right)\ge0\)

\(\Rightarrow1-y-x+xy\ge0\Leftrightarrow1+xy\ge x+y\)(1)

Tiếp tục chứng minh:

\(\hept{\begin{cases}0\le x\le y\Leftrightarrow xy\ge0\\1\ge z\end{cases}}\) (2)

Cộng theo vế của (1) và (2) ta có:\(2\left(xy+1\right)\ge x+y+z\)

trở lại bài toán: \(\frac{z}{xy+1}=\frac{2z}{2\left(xy+1\right)}\le\frac{2z}{x+y+z}\)

CHứng minh tương tự: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{2x}{x+y+z}\\\frac{y}{xz+1}\le\frac{2y}{x+y+z}\end{cases}}\)

Cộng theo vế ta có đpcm

28 tháng 6 2020

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\)

\(\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Chứng minh tương tự ta được \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{z+x}\left(3\right)\end{cases}}\)

Cộng từng vế của (1)(2)(3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+x}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Chứng minh tương tự được \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}=2\left(5\right)\)

(4)(5) => đpcm

14 tháng 5 2019

Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!

28 tháng 1 2019

CMR : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2;\left(0\le x\le y\le z\le1\right)\)

Ta có : \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)

Ta lại có : \(0\le x\le1;0\le y\le1\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Leftrightarrow xy-x-y+1\ge0\)

\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)

Thay (2) và (1) được : \(\frac{x+y+z}{xy+1}\le\frac{xy+1+2}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}=2\)

16 tháng 5 2020

Vì \(0\le x\le y\le z\le1\Rightarrow x-1\le0;y-1\le0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\Rightarrow\frac{1}{xy+1}\le\frac{1}{x+y}\Rightarrow\frac{z}{xy+1}\le\frac{z}{x+y}\left(1\right)\)

Cmtt: \(\hept{\begin{cases}\frac{x}{yz+1}\le\frac{x}{y+z}\left(2\right)\\\frac{y}{xz+1}\le\frac{y}{x+z}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\left(4\right)\)

Mà \(\frac{x}{y+z}\le\frac{x+z}{x+y+z}\Rightarrow\frac{x}{y+z}\le\frac{2x}{x+y+z}\)

Cmtt: \(\hept{\begin{cases}\frac{y}{x+z}\le\frac{2y}{x+y+z}\\\frac{z}{x+y}\le\frac{2z}{x+y+z}\end{cases}}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\le\frac{2\left(x+y+z\right)}{x+y+z}\le2\left(5\right)\)

Từ (4), (5) => đpcm

29 tháng 11 2018

:v .Sai mẹ r. *Chứng lại (mong rằng lầng này không còn lỗi sai).Sau đây là cách chứng minh của lớp 7

Do \(0\le x\le y\le z\le1\) nên \(xy< xz< yz\Leftrightarrow xy+1< xz+1< yz+1\)

Do đó; \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\) (1)

Ta cần chứng minh: \(\frac{x+y+z}{1+xy}\le\frac{1+xy+1}{1+xy}\Leftrightarrow x+y+z\le1+xy+1\)(đang tìm cách chứng minh.Sẽ đăng lên sau)

Suy ra: \(\frac{x+y+z}{xy+1}\le\frac{1+xy+1}{xy+1}=1+\frac{1}{xy+1}\le1+1=2\)  ( do \(xy+1\ge1\Rightarrow\frac{1}{xy+1}\le1\))(2)

Từ (1) và (2) suy ra đpcm 

29 tháng 11 2018

mik đành thêm vào bài(gì mà đăng lên sau nhé)

Hiển nhiên \(0\le x\le y\le z\le1\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\y-1\ge0\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy+1-x-y\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Do \(z\le1\)\(\Rightarrow\frac{x+y+z}{xy+1}\le\frac{xy+1+1}{xy+1}\le\frac{xy+2+xy}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}\le2\)

Nhờ bạn giải hộ mik giấu bằng xảy ra khi nào

18 tháng 1 2020

2.

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Bài 1:
Ta có:
$x+y+2=xy$

$\Leftrightarrow xy-x-y=2$

$\Leftrightarrow x(y-1)-(y-1)=3$

$\Leftrightarrow (x-1)(y-1)=3$
Đến đây là dạng phương trình tích đơn giản. Ta xét các TH sau:

TH1: $x-1=1$ và $y-1=3$

$\Rightarrow x=2; y=4$

TH2: $x-1=-1$ và $y-1=-3$

$\Rightarrow x=0; y=-2$

Do vai trò $x,y$ như nhau nên $x=4;y=2$ và $x=-2;y=0$ cũng thỏa mãn

Vậy.......

Vậy.........

5 tháng 2 2018

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

11 tháng 2 2018

không biết liệu dấu đẳng thức có xẩy ra không nhỉ