K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Áp dụng bất đẳng thức giá trị tuyệt đối sau: |a| - |b| \(\le\) |a + b|. Dấu "=" khi a.b \(\le\) 0

Ta có: A = |2x + 7| - |2x - 3| = |2x + 7|- |3 - 2x| \(\le\) |2x + 7 + 3 - 2x| = 10

Dấu "=" khi (2x+7). (3 - 2x) \(\le\) 0 => (2x +7).(2x - 3) \(\ge\) 0 

mà 2x + 7 > 2x - 3 => 2x + 7 \(\le\) 0 hoặc 2x - 3 \(\ge\) 0 => x \(\le\) -7/2 hoặc x   \(\ge\) 3/2

Vậy A lớn nhất = 10 khi  x \(\le\) -7/2 hoặc x   \(\ge\) 3/2

26 tháng 7 2015

Bạn Nguyễn Thị Bích Phương làm sai rồi.

6 tháng 3 2023

A = 2(2x + 3)2 + 5

vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5 

A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)

22 tháng 12 2023

Tìm GTNN của biểu thức (2x+5)4+3

26 tháng 8 2016

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15 

Mà: x2\(\ge\)0  => x2 - 15\(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0

Tìm Amax là của lớp 6 mà=)))
Ta có : 5.x^2 >= 0cvới mọi x thuộc Z

=)-5.x^2 =< 0 với mọi x thuộc Z

=)2x-5.x^2=< 2x với mọi x thuộc Z

=)2-5.x=<2 với mọi x thuộc Z

=) A=2-5.x=< với mọi x thuộc Z

Dấu "=" xảy ra <=> 5.x=0

                      <=> x=0

Vậy Amax=2 <=> x=0
Nhớ tích nha=)))Con bé mới lớp 6

=)

24 tháng 4 2016

A = 2x - 5x\(\frac{1}{5}-\left(5x^2-2x+\frac{1}{5}\right)=\frac{1}{5}-\left(\sqrt{5}x-\frac{1}{\sqrt{5}}\right)^2\)

Ta thấy \(\left(\sqrt{5}x-\frac{1}{\sqrt{5}}\right)^2\ge0\)(Xẩy ra dấu bằng khi \(x=\frac{1}{5}\))

Vậy Max A = \(\frac{1}{5}\) khi \(x=\frac{1}{5}\)

6 tháng 7 2019

29 tháng 1 2017

Bài 1:

Ta có: \(-\left|2x+6\right|\le0\)

\(\Rightarrow9-\left|2x+6\right|\le9\)

\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)

Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)

Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\Rightarrow\left|2x+6\right|-3\ge-3\)

\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)

Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)

Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)

19 tháng 8 2017

Ai giải đúng 4 câu mik cho 2 cái nha

19 tháng 8 2017

cần chi tiết k

a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất

=> |x-7| = 0 

Vậy GTNN của A là : 0-1= -1