K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(12=3a+5b\ge2\sqrt{15ab}\)

Suy ra \(\sqrt{ab}\le\frac{12}{2\sqrt{15}}\Rightarrow M=ab\le\frac{12}{5}\)

Đẳng thức xảy ra  khi \(\hept{\begin{cases}3a=5b\\3a+5b=12\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)

20 tháng 2 2017

a)\(A=a^3-b^3-ab=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

\(A=a^2+ab+b^2-ab=a^2+b^2\ge0\)

\(minA=0\Leftrightarrow a=b=0\)

b)\(3a+5b=12\Leftrightarrow3a=12-5b\)

\(3B=3ab=\left(12-5b\right).b=-5b^2+12b\)

\(3B=-5b^2+12b-7,2+7,2=-\frac{1}{5}\left(5b-6\right)^2+7,2\le7,2\) \(\Leftrightarrow B\le2,4\)

\(maxB=2,4\Leftrightarrow b=1,2\Leftrightarrow a=2\)

24 tháng 6 2017

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

24 tháng 6 2017

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!

14 tháng 7 2016

1) \(A=\frac{12}{4+x+\sqrt{x}}\) . Điều kiện xác định là \(x\ge0\)

Nhận thấy A đạt giá trị lớn nhất khi \(\frac{1}{A}\)đạt giá trị nhỏ nhất.

Ta xét \(\frac{1}{A}=\frac{x+\sqrt{x}+4}{12}=\frac{x}{12}+\frac{\sqrt{x}}{12}+\frac{1}{3}\)

Vì điều kiện xác định \(x\ge0\) nên ta có \(\frac{1}{A}\ge\frac{1}{3}\)

\(\Rightarrow A\le3\)

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy A đạt giá trị lớn nhất là 3 tại x = 0

2) Từ \(6a^2-15ab+5b^2=0\) , chia cả hai vế của đẳng thức cho \(b^2\ne0\) được : 

\(6\left(\frac{a}{b}\right)^2-15.\frac{a}{b}+5=0\) . Đặt \(x=\frac{a}{b}\) , phương trình trở thành :

\(6x^2-15x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{105}}{12}\\x=\frac{15-\sqrt{105}}{12}\end{cases}}\)

Đến đây xét từng trường hợp của x rồi biểu diễn b theo a và thay vào D là xong.

(Chắc đây là đề thi Casio nên kết quả sẽ rất lẻ)

23 tháng 7 2017

Tìm GTLN nak !!!

\(C=-x^2-2x+5-y^2+4y\)

\(=\left(-x^2-2x-1\right)+\left(-y^2+4y-4\right)+10\)

\(=-\left(x+1\right)^2-\left(y-2\right)^2+10\le10\)có GTLN là 10

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Vậy \(C_{max}=10\) tại \(x=-1;y=2\)

23 tháng 7 2017

+10 ở đâu ra vậy bn 

NV
4 tháng 10 2020

\(3a+5b=12\Rightarrow b=\frac{12-3a}{5}\)

\(\Rightarrow B=a\left(\frac{12-3a}{5}\right)=\frac{-3a^2+12a}{5}=\frac{-3\left(a^2-4a+4\right)+12}{5}=-\frac{3}{5}\left(a-2\right)^2+\frac{12}{5}\le\frac{12}{5}\)

\(B_{max}=\frac{12}{5}\) khi \(\left\{{}\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)