Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge0\)
\(A=\frac{1}{5x+3\sqrt{x}+8}\le\frac{1}{5.0+3\sqrt{0}+8}=\frac{1}{8}\)
Dấu "=" xảy ra <=> x = 0
Vậy ...
ĐK: x>0, 5x-3\(\sqrt{x}\)+8≠ 0
+) 5x-3\(\sqrt{x}\)+8 <0 thì A<0
+)5x-3\(\sqrt{x}\)+8>0, ta có:
\(\frac{1}{5x-3\sqrt{x}+8}\) lớn nhất khi và chỉ khi \(5x-3\sqrt{x}+8\)bé nhất
5x-3\(\sqrt{x}\)+8 ≥ 3/10 ∀x
⇒ Min5x-3\(\sqrt{x}\)+8=3/10
⇒ GTLN của A là 1: 3/10=10/3
Sai thì thôi :v
ĐKXĐ: ...
\(A=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{10}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)
\(A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)
\(A=\frac{1}{5x-3\sqrt{x}+8}=\frac{1}{5\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}}\le\frac{1}{\frac{151}{20}}=\frac{20}{151}\)
\(\Rightarrow A_{max}=\frac{20}{151}\) khi \(\sqrt{x}=\frac{3}{10}\Rightarrow x=\frac{9}{100}\)
\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
\(2A=2\sqrt{2x^2+5x+2}+4\sqrt{x+3}-4x\)
\(2A=2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)
\(\le2x+1+x+2+4+x+3-4x=10\)
=>2A\(\le10\Rightarrow A\le5\)
dấu bằng xảy ra \(\Leftrightarrow2x+1=x+2\)
và x+3=4
=>x=1
maxA=5 khi x=1
2/ \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Ta thấy rằng mẫu là số dương nên để P lớn nhất thì mẫu bé nhất hay x = 0
\(P=\frac{2}{3}\)
1/ Đặt \(\sqrt{x}=a\:voi\:a\ge0\) thì pt thành
\(\frac{2-5a}{a+3}=\frac{5-8a}{3a+1}\)
\(\Leftrightarrow7a^2-20a+13=0\)
<=> (a - 1)(7a - 13) = 0
\(B=\frac{ab}{a+b+2}\Rightarrow2B=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-a^2-b^2}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Do a ; b không âm , áp dụng BĐT Cô - si cho 2 số , ta có :
\(a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{2.4}=\sqrt{8}\)
\(\Rightarrow a+b-2\le\sqrt{8}-2\)
\(\Rightarrow2B\le\sqrt{8}-2\Rightarrow B\le\sqrt{2}-1\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=\sqrt{2}\)
Do x ; y không âm , \(x^2+y^2=1\)
\(\Rightarrow\left|x\right|;\left|y\right|\le1\) \(\Rightarrow0\le x;y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2\Rightarrow x+y\ge x^2+y^2=1\)
\(x,y\ge0\Rightarrow xy\ge0\)
Ta có : \(A=\sqrt{5x+4}+\sqrt{5y+4}\)
\(\Rightarrow A^2=5x+4+5y+4+2\sqrt{\left(5x+4\right)\left(5y+4\right)}\)
\(=5\left(x+y\right)+8+2\sqrt{25xy+20y+20x+16}\)
\(\ge5.1+8+2\sqrt{25.0+20.1+16}=13+2.6=25\)
\(\Rightarrow A\ge5\)
Dấu " = " xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
ĐKXĐ :\(x\ge0\)
Mẫu :\(5x-3\sqrt{x}+8\)
\(=\left(\sqrt{5x}\right)^2-2.\frac{3\sqrt{5}}{10}.\sqrt{5x}+\left(\frac{3\sqrt{5}}{10}\right)^2+8-\left(\frac{3\sqrt{5}}{10}\right)^2\)
\(=\left(\sqrt{5x}-\frac{3\sqrt{5}}{10}\right)^2+\frac{151}{20}\)
\(=\sqrt{5}.\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}\ge\frac{151}{20}\)(do \(\left(\sqrt{x}-\frac{3}{10}\right)^2\ge0\) )
\(\Rightarrow5x-3\sqrt{x}+8\ge\frac{151}{20}\)
\(\Rightarrow\frac{1}{5x-3\sqrt{x}+8}\le\frac{20}{151}\)
Mặt khác \(A=\frac{1}{5x-3\sqrt{x}+8}\)
\(\Rightarrow A\le\frac{20}{151}\)
Dấu ''='' xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{10}\) hay \(x=\frac{9}{100}\)
Vậy Max A = \(\frac{20}{151}\)\(\Leftrightarrow\)\(x=\frac{9}{100}\)
\(A=\frac{1}{5x-3\sqrt{x}+8}\left(ĐKXĐ:x\ge0\right)\)Dễ dàng cm A>0
Đặt \(\sqrt{x}=t\)(\(t\ge0\))
Khi đó ta viết lại A dưới dạng \(A=\frac{1}{5t^2-3t+8}\)
\(\Leftrightarrow5t^2A-3t.A+8A-1=0\)
\(\Delta=9A^2-4.5A\left(8A-1\right)=9A^2-160A^2+20A=-151A^2+20A\ge0\)
\(\Leftrightarrow151A^2-20A\le0\)
\(\Leftrightarrow A\left(151A-20\right)\le0\)
\(\Leftrightarrow A\le\frac{20}{151}\)(Do A>0)
Vậy MAXA=20/151.Dấu "=" xảy ra khi
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\111A-20\ge0\end{cases}}\\\hept{\begin{cases}A\ge0\\111A-20\le0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\A\ge\frac{20}{111}\end{cases}}\\\hept{\begin{cases}A\ge0\\A\le\frac{20}{111}\end{cases}}\end{cases}\Rightarrow}}A\le\frac{20}{111}\)