Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)
\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)
...
a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)
\(\sqrt{x}=y\\ \)
ĐK: \(x\ne0,1,4\Leftrightarrow\left\{\begin{matrix}y>0\\y\ne1\&4\end{matrix}\right.\) ko sửa được y khác 1 &2
\(P=\left(\frac{\left(1-y\right)}{\left(y-2\right)}+\frac{y}{\left(y-1\right)}+\frac{y+2}{\left(y-1\right)\left(y-2\right)}\right):\left(\frac{2}{y-2}-\frac{y-1}{y\left(y-2\right)}\right)\)
\(P=\left(\frac{2y-y^2-1}{\left(y-2\right)\left(y-1\right)}+\frac{y^2-2y}{\left(y-1\right)\left(y-2\right)}+\frac{y+2}{\left(y-1\right)\left(y-2\right)}\right):\left(\frac{2y-y+1}{y\left(y-2\right)}\right)\)
\(P=\left(\frac{y+1}{\left(y-1\right)\left(y-2\right)}\right).\left(\frac{y\left(y-2\right)}{\left(y+1\right)}\right)=\frac{y}{y-1}\)
a) \(P=\frac{\sqrt{x}}{\sqrt{x}-1}\)
b)\(x=6-2\sqrt{5}=5-2\sqrt{5}+1=\left(\sqrt{5}-1\right)^2\)
\(p=\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}-2}=\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)=3-\sqrt{5}\)
C)\(\frac{P}{\sqrt{x}}=\frac{1}{\sqrt{x}-1}\ge-1\) tuy nhiên đk: x khác 0=> dấu đẳng thức không xẩy ra (xem lại đề)
Xem lại 1/(căn(x)-1) có cực trị duy nhất khi x=0 tuy nhiên nó cũng không phải GTLN : rất có thể rút gọn P bị sai nếu không đề sai.
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
2/ \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Ta thấy rằng mẫu là số dương nên để P lớn nhất thì mẫu bé nhất hay x = 0
\(P=\frac{2}{3}\)
1/ Đặt \(\sqrt{x}=a\:voi\:a\ge0\) thì pt thành
\(\frac{2-5a}{a+3}=\frac{5-8a}{3a+1}\)
\(\Leftrightarrow7a^2-20a+13=0\)
<=> (a - 1)(7a - 13) = 0