Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
we had abc+(4-a)(4-b)(4-c)\(\ge0\). khai triển ta có \(ab+bc+ca\ge8\)( maybe)
\(P=\left(a+b+c\right)^2-\left(ab+bc+ca\right)\le6^2-8=28\)
Dấu = xảy ra (a,b,c)~(0;2;4) và các hoán vị
b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)
\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)
\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:
\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)
Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Áp dụng BĐT Cô - Si cho 3 số dương \(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)ta có :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
\(\Rightarrow P\ge3\)
dấu bằng sảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
\(\Rightarrow a=b=c\)và \(2\le a,b,c\le4\)
Câu này làm thế nào nhỉ.Mình cũng đang thắc mắc.Gần thi huyện rồi
đặt \(t=ab+bc+ca\)
\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)
mặt khác
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)
khi đó
\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)
xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)
\(f'\left(t\right)=-\frac{9}{t^2}< 0\)
=> f(t) N Biến \(\left(-\infty,3\right)\)
min f(t)=f(3)=1
koo tồn tại max\(f\left(t\right)\)
zậy minP=1 khi a=b=c=1
28 nha bạn