Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !
Câu 1 : Tìm GTNN
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :
\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)
\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)
\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)
\(D=\left(4-5x\right)^{2k}-3^2=\left(4-5x\right)^{2k}-9\)
Vì \(\left(4-5x\right)^{2k}\ge0\Rightarrow D=\left(4-5x\right)^{2k}-9\ge9\)
=>Dmin=(4-5x)2k-9=9
=>(4-5x)2k=0
=>4-5x=0
=>5x=4
=>x\(=\frac{4}{5}\)
Vậy Dmin khi x=\(\frac{4}{5}\)
do (4-5x)2k\(\ge\)0 với mọi x
=>D=(4-5x)2k-32\(\ge\)-9 với mọi x
Dấu bằng xảy ra khi:(4-5x)2k-32=9
=>(4-5x)2k=0
=>4-5x=0
=>5x=4
=>x=\(\frac{4}{5}\)
vậy D min = -9 tại x=\(\frac{4}{5}\)=0,8
k(k+1)(k+2)-(k-1)k(k+1)
=(k+1)(k2+2k)-(k2-k)(k+1)
=(k+1)[(k2+2k)-(k2-k)]
=(k+1)[k2+2k-k2+k]
=(k+1)[(k2-k2)+(2k+k)]
=(k+1)3k (Đpcm)
Chứng tỏ: \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
\(VT=\left(k+1\right)\left[k\left(k+2\right)-k\left(k-1\right)\right]=\left(k+1\right)\left(k^2+2k-k^2+k\right)\)
\(=\left(k+1\right).3k=VP\)
Ta có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)
Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)
Ta có:
\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)
\(=k\left(k+1\right)\left[k+2-k+1\right]\)
\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)
\(=k\left(k+1\right).3\)
\(=3k\left(k+1\right)\)
\(\Rightarrow VT=VP\)
Vậy với \(k\in N\)* thì ta luôn có:
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)
a) Ta có: \(-\left|x\right|\le0\)
\(-\left(y+4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=-4\)
b) Hình như sai đề thì phải
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]=3k\left(k+1\right)\)
Công thức tinh tổng là : \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\left(ĐPCM\right)\)
\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
3\(S=3\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]\)
\(3S=1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
3S=n(n+1)(n+2)
\(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
pt \(\Leftrightarrow\)\(19k+190=A^2\)\(\Leftrightarrow\)\(k=\frac{A^2-190}{19}\)
Để k nhỏ nhất và \(k\inℕ^∗\) thì \(\frac{A^2-190}{19}=\frac{A^2}{19}-19\) nhỏ nhất và \(A^2>190\)\(\Leftrightarrow\)\(A\ge14\); \(A^2⋮19\)
Mà 19 là số nguyên tố nên để \(\frac{A^2-190}{19}\) nhỏ nhất và \(A^2⋮19\) thì \(A=19\left(tm:A\ge14\right)\)
\(\Rightarrow\)\(k=\frac{A^2-190}{19}=\frac{19^2-190}{19}=9\)