K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)

Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)

\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2011\le x\le2015\)

Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)

\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2012\le x\le2014\)

Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)

                      \(\Leftrightarrow x=2013\)

Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)

Hay \(A\ge6\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)

Vậy \(A_{min}=6\Leftrightarrow x=2013\)

28 tháng 10 2023

a: \(\left(x-2\right)^2>=0\)

\(\left|y-x\right|>=0\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

=>A>=3 với mọi x,y

Dấu = xảy ra khi x-2=0 và y-x=0

=>x=2=y

b: \(\left|x+5\right|>=0\)

=>\(\left|x+5\right|+5>=5\)

=>B>=5 với mọi x

Dấu = xảy ra khi x+5=0

=>x=-5

c: \(\left|x-2010\right|>=0\)

=>\(-\left|x-2010\right|< =0\)

=>\(-\left|x-2010\right|+2012< =2012\)

=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)

Dấu = xảy ra khi x=2010

28 tháng 10 2023

a) Ta có:

\(A=\left(x-2\right)^2+\left|y-x\right|+3\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)

\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

\(\Rightarrow x=y=2\)

Vậy: \(A_{min}=3\Leftrightarrow x=y=2\) 

b) Ta có:

\(B=\left|x+5\right|+5\)

Mà: \(\left|x+5\right|\ge0\)

\(\Rightarrow B=\left|x+5\right|+5\ge5\)

Dấu "=" xảy ra:

\(x+5=0\Rightarrow x=-5\)

Vậy: \(B_{min}=5\Leftrightarrow x=-5\)

c) Ta có:

\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)

Mà: \(\left|x-2010\right|\ge0\)

\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)

Dấu "=" xảy ra khi:

\(x-2010=0\Rightarrow x=2010\)

Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)

15 tháng 1 2016

ai giúp vs

 

11 tháng 3 2017

A=6 nhé

X=2016

11 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)

\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)

Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)

\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)

Vậy \(A_{min}=2\) tại \(x=2014\)

20 tháng 8 2019

Ta có: A = |x - 2011| + |x - 200|

=> A = |x - 2011| + |200 - x| \(\ge\)|x - 2011 + 200  - x| = |-1811| = 1811

Dấu "=" xảy ra <=> (x - 2011)(200 - x) \(\ge\)0

=> \(200\le x\le2011\)

Vậy MinA = 1811 <=> \(200\le x\le2011\)

Ta có: B = |x - 2015| + |x - 2013|

=> B = |x - 2015| + |2013 - x| \(\ge\)|x - 2015 + 2013 - x| = |-2| = 2

Dấu "=" xảy ra <=> (x - 2015)(2013 - x) \(\ge\)0

=> \(2013\le x\le2015\)

vậy MinB = 2 <=> \(2013\le x\le2015\)

25 tháng 11 2016

Ta có: A = |x-2013|+|x-2014|+|x-2015|

Vì \(\left|x-2013\right|\ge0;\left|x-2014\right|\ge0;\left|x-2015\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}x-2013=0\\x-2014=0\\x-2015=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=2014\\x=2015\end{cases}}}\)

Vậy x không có giá trị vì x không thể cùng lúc có tới 3 giá trị khác nhau

\(\Rightarrow x\in\theta\)

25 tháng 11 2016

A =2 khi x=2013;2014;2015

20 tháng 3 2019

\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)

\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

V...

16 tháng 1 2018

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|2014-x\right|+\left|2015-x\right|+\left|x-2013\right|\)

Ta có: \(\left\{{}\begin{matrix}\left|x-2011\right|\ge x-2011\\\left|x-2012\right|\ge x-2012\\\left|2014-x\right|\ge2014-x\\\left|2015-x\right|\ge2015-x\end{matrix}\right.\)

\(A\ge x-2011+x-2012+2014-x+2015-x+\left|x-2013\right|\)

\(A\ge6+\left|x-2013\right|\ge6\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2011\\x\ge2012\\x\le2014\\x\le2015\end{matrix}\right.\)\(x=2013\)

\(\Rightarrow\left\{{}\begin{matrix}2012\le x\le2014\\x=2013\end{matrix}\right.\Leftrightarrow x=2013\)

Vậy....

25 tháng 2 2017

để Anhỏ nhất => x=2013 mình nghĩ thế thôi

24 tháng 9 2017

\(A=\left|x-2014\right|+\left|x-2015\right|+\left|x-2016\right|\)

\(A=\left|x-2015\right|+\left|x-2014\right|+\left|x-2016\right|\)

\(A=\left|x-2015\right|+(\left|x-2014\right|+\left|x-2016\right|)\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2014\right|+\left|x-2016\right|\)

\(=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|\)

\(=\left|2\right|=2\)

\(\Leftrightarrow\left|x-2014\right|+\left|x-2015\right|+\left|x-2016\right|\ge2\)

Đẳng thức xảy ra \(\Leftrightarrow\left[{}\begin{matrix}x-2014\ge0\\x-2015=0\\x-2016\le0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\)

\(\Rightarrow Min_A=2\Leftrightarrow x=2015.\)

24 tháng 9 2017

GTNN của A là ( -999...9)