Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(A=x^2+5y^2-2xy+4y+3\)= \(\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
= \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
(Do \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\))
Vậy min A=2. Dấu = khi x=y=-1/2
b) Đặt \(t=x^2-2x+1\)
=> \(B=\left(t-1\right)\left(t+1\right)\)=\(t^2-1\)=\(t^2+\left(-1\right)\ge-1\)
Do \(t^2\ge0\)
Vậy min B=-1. Dấu = khi t=0 hay \(x^2-2x+1=0\)
=> \(\left(x-1\right)^2=0\)<=> x=1
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)
\(B=-4x^2-5y^2+8xy+10y+12\)
\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)
\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)
\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)
=>x=y=5
\(E=2x^2+5y^2+x+4y+5\)
\(\Rightarrow E=2x^2+x+5y^2+4y+5\)
\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}-\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}-\dfrac{4}{25}\right)+5\)
\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)+5-\dfrac{1}{8}-\dfrac{4}{5}\)
\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\)
mà \(\left\{{}\begin{matrix}2\left(x+\dfrac{1}{4}\right)^2\ge0,\forall x\\5\left(y+\dfrac{2}{5}\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\ge\dfrac{163}{40}\)
\(\Rightarrow GTNN\left(E\right)=\dfrac{163}{40}\left(tạix=-\dfrac{1}{4};y=-\dfrac{2}{5}\right)\)
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
\(D=x^2+4y^2-2xy-6y-10x+10y+32\)
\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)
\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)
\(=\left(x-y-5\right)^2+3y^2-6y+7\)
\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)
\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)
Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow D\ge4\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)
Vậy : min \(D=4\) tại \(x=6,y=1\)
\(C=x^2+5y^2-2xy+4y+3\)
\(=x^2+4y^2+y^2-2xy+4y+2+1\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Ta có: \(\left(x-y\right)^2\ge0\) ; \(\left(2y+1\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\)
\(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Vậy GTNN của C là 2
Dấu \("="\) xảy ra khi :
\(2y+1=0\Rightarrow2y=0-1=-1\Rightarrow y=\dfrac{-1}{2}\)
hoặc \(x-y=0\)\(\Rightarrow x=y=-\dfrac{1}{2}\)
E = 2x^2 - 5x -2 = 2( x^2 -5/2x -1) = 2(x^2 - 2.x.5/4 +25/16 - 41/16) = 2(x - 5/4 )^2 + 41/8
Vậy GTNN của biểu thức là 41/8 tại x = 5/4
F = x^2 + 5y^2 + 2xy -y +3 = (x^2 + 2xy +y^2) + (4y^2 - 2.2y.1/4 + 1/16) +47/16
(x + y)^2 + (2y - 1/4)^2 + 47/16
Vậy GTNN của BT là 47/16 tại x = y = 1/8
=x2-2xy+y2+4y2+4y+1+2
=(x-y)2+(2y+1)2+2\(\ge2\)
dấu bằng xảy ra khi x=y=-1/2