K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Ta có : \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|-2y+8\right|\ge0\end{cases}}\)

\(\Rightarrow P=\left|x-2\right|+\left|-2y+8\right|+2018\)đạt GTNN

\(\Leftrightarrow\)\(\hept{\begin{cases}\left|x-2\right|=0\\\left|-2y+8\right|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\-2y+8=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\-2y=-8\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy P đạt GTNN <=> x = 2 ; y = 4

*<=> : khi và chỉ khi

9 tháng 7 2018

Quên, sót : 

- Cái đoạn suy ra P = ... đạt GTNN bạn sửa thành : P = ... đạt GTNN bằng 2018 <=> ...

- Bổ sung câu kết : Vậy P đạt GTNN bằng 2018 <=> x =2 ; y = 4 nhé

7 tháng 8 2019

\(A=\left(5-x\right)^{2016}+|2y+6|-2015\)

Vì \(\left(5-x\right)^{2016}=[\left(5-x\right)^{1008}]^2\ge0,\forall x\)

\(|2y+6|\ge0,\forall y\)

nên \(A=\left(5-x\right)^{2016}+|2y+6|-2015\)\(\ge0+0-2015=2015,\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(5-x\right)^{2016}=0\\|2y+6|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5-x=0\\2y+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

Vậy GTNN của A bằng -2015 \(\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

\(B=\frac{-144}{\left(2x+1\right)^4+12}\)

Vì \(\left(2x+1\right)^4=[\left(2x+1\right)^2]^2\ge0,\forall x\)

nên \(\left(2x+1\right)^4+12\ge0+12=12,\forall x\)

\(\Rightarrow B=\frac{-144}{\left(2x+1\right)^4+12}\ge\frac{-144}{12}=-12,\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+1\right)^4=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của B bằng -12\(\Leftrightarrow x=-\frac{1}{2}\)

Chúc bạn học tốt ! Nguyen thi ngoc yen

cảm ơn bạn nha

19 tháng 1 2017

Câu B=.....\(-5\)

nhé ko phải trừ \(55\)

trừ 5 nhé

19 tháng 1 2017

a) Ta có: \(-\left|x\right|\le0\)

\(-\left(y+4\right)^4\le0\)

\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)

\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)

Vậy \(MAX_A=10\) khi \(x=0;y=-4\)

b) Hình như sai đề thì phải

23 tháng 6 2021

a) Có \(\left(x-1\right)^2\ge0\)

<=> A \(\ge2014\)

Dấu "=" <=> x = 1

b) Có \(\left|x+4\right|\ge0\)

<=> B \(\ge2014\)

Dấu "=" <=> x = -4

23 tháng 6 2021

a) \(A=\left(x-1\right)^2+2014\ge2014\)

Dấu = xảy ra khi x = 1

b) \(B=\left|x+4\right|+2014\ge2014\)

Dấu = xảy ra khi x = -4

 

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

16 tháng 7 2021

Áp dụng tính chất :`|P|>=P,|P|>=-P`

`=>{(|x-2019|>=x-2019),(|x-2021|>=2021-x):}`

`=>A>=x-2019+2021-x=2`

Dấu "=" xảy ra khi `{(x-2019>=0),(2021-x<=0):}`

`<=>{(x>=2019),(x<=2021):}`

`<=>2019<=x<=2021`

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể