Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\ge\left|3-x+4+x\right|=7\)
Dấu bằng xảy ra \(\Leftrightarrow\left(3-x\right)\left(4+x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}3-x\ge0,4+x\ge0\\3-x\le0,4+x\le0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le3,x\ge-4\\x\ge3,x\le-4\left(VL\right)\end{matrix}\right.\) \(\Rightarrow-4\le x\le3\) Vậy...
Có:\(H=\left|3-x\right|+\left|x+4\right|=\left|3-x\right|+\left|x+4\right|\)
Vậy áp dụng pđt : \(\left|A\right|+\left|B\right|\) ≥ \(\left|A+B\right|\) ta có L
\(H\) ≥ \(\left|3-x+4+x\right|=7\)
Vậy GTNN của \(H\) là 7 khi \(\left[{}\begin{matrix}3-x\\x+4\end{matrix}\right.\)≥0⇔ -4 ≤ x≤ 3
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
\(B=x\left(x+3\right)\)
\(B=x^2+3x\)
\(B=x^2+2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
\(B=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{9}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
P.s L cái này dùng hằng đẳng thức sợ bạn chưa học :v
Ta có:\(\left|x-1\right|\ge0\)
\(\left|x-2022\right|\ge0\)
=> \(Min_C=0\)
có cách nào dễ hiểu dành cho học sinh lớp 7 ko anh