K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

A = | 1993 - x| + |1994 - x|

GTNN của | 1993 - x| là 0 vs mọi số nuyên x

GTNN của | 1994 - x| là 0 vs mọi số nguyên x

=> GTNN của A = | 1993 - 1994| hoặc | 1994 - 1993| = 1

26 tháng 9 2016

a) Ta có A= x - 3 + ( 5 -x )

\(\Rightarrow\)x -3 +5 - x = 2 . vậy max( A ) = 2

b) ta có B = 1993 - x -(1994 - x)

\(\Rightarrow\)1993 - x -1994 +x = -1 . vậy min (B) = -1

28 tháng 9 2020

 bvnty7bvjy,g8i8.ohu/.gyuo.jlk rf679.y,7 7/hnkhvg yuki hbbuj vghj nhik ygci t7cy y j

28 tháng 9 2020

hỏi chụy Google

24 tháng 6 2017

\(D=|x-1|+|x-4|=|x-1|+|4-x|\ge|x-1+4-x|=3\)

\(B=|1993-x|+|1994-x|=|1993-x|+|x-1994|\ge|1993-x+x-1994|=1\)

\(C=x^2+|y-2|-5\ge-5\)

24 tháng 6 2017

Để D nhỏ nhất => I x-1I bé nhất hoặc I x-4I bé nhất => x-1 =0 hoặc x-4=0

=> x= 1 hoặc x=4 

Vậy GTNN của D là: I 1-4I = 3 tại x= 1 hoặc x=4

B tương tự

Để C nhỏ nhất => x^2 bé nhất và I y - 2I bé nhất => x^2 = 0 và y-2 = 0

x= 0 và y=2

VaayjGTNN của C là -5 tại x=0 và y=2

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.