K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)

Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

\(\left|y+3\right|>=0\forall y\)

Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)

=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)

=>\(P>=2022\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y+3=0

=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

20 tháng 11 2018

\(P=\left(|x-10|+5\right)^2+2|y-3|+2018\)

  VÌ \(\left(|x-10|+5\right)^2\ge0 \left(1\right)\)

             \(2|y-3|\ge0 \left(2\right)\)

   TỪ (1);(2) \(\Rightarrow P=\left(|x-10|+5\right)^2+2|y-3|+2018\ge2018\)

DẤU "=" XẢY RA \(\Leftrightarrow\hept{\begin{cases}\left(|x-10|+5\right)^2=0\\2|y-3|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}|x-10|=-5\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)

   VẬY Pmax=2018\(\Leftrightarrow\)x = 5 và y = 3

28 tháng 12 2018

Giá trị tuyệt đối sao bằng âm được hả bạn???
Có: |x - 10| lớn hơn hoặc bằng 0 => |x - 10| + 5 lớn hơn hoặc bằng 5 => (|x - 10| + 5)2 lớn hơn hoặc bằn 25. Dấu "=" xảy ra khi x = 10 (*)
Cũng có: |y - 3| lớn hơn hoặc bằng 0 => 2|y - 3| lớn hơn hoặc bằng 0. Dấu "=" xảy ra khi y = 3 (**)
Từ (*) và (**) => Pmin = 25 + 0 + 2018 = 2043

25 tháng 4 2020

A = ( x - 2 )2 + 2019 

    ( x-  2 )2 \(\ge0\forall x\)

=> ( x - 2)2 + 2019 \(\ge2019\)

=> A \(\ge2019\)

Dấu " = " xảy ra <=> ( x - 2)2 =0

                                    <=> x = 2 

b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình 

c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020 

( 3-x )100 \(\ge0\forall x\)

=> - ( 3-x)100 \(\le0\forall x\)

Tương tự : - 3.( y+2)100 \(\le0\forall y\)

=> C \(\le2020\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

25 tháng 4 2020

@Shadow@ Đề câu b) đúng rồi đó

\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)

ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)

=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

11 tháng 2 2017

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

3 tháng 8 2018

Ta có: \(\left(x-15\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-15\right)^2+2018\ge2018\forall x\)

Dấu ' = ' xảy ra \(\Leftrightarrow\left(x-15\right)^2=0\Leftrightarrow x=15\)

Vậy GTNN của biểu thức \(\left(x-15\right)^2+2018=2018\Leftrightarrow x=15\)

Tham khảo nhé~

3 tháng 8 2018

\(\left(x-15\right)^2+2018\)

 Ta có:\(\left(x-15\right)^2\ge0;2018>0\)

   \(\Rightarrow\left(x-15\right)^2+2018\ge2018\)

Vậy GTNN của biểu thức =2018

7 tháng 5 2018

Ta có \(\left(x-2\right)^{2016}\ge0\)với mọi giá trị của x

\(\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x

=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x

=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\ge1\)với mọi giá trị của x

=> Amin = 1 khi và chỉ khi \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)

Ta lại có \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)

=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy khi x = 2 và \(y=\frac{1}{2}\)thì \(A=\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\)đạt GTNN là 1.

7 tháng 5 2018

A = ( x-2)2016  +  (2y-1)2018 + 1

Ta có : ( x-2)2016\(\ge\)0

           (2y-1)2018\(\ge\)0

\(\Rightarrow\)  ( x-2)2016  +  (2y-1)2018 + 1\(\ge\)1

\(\Rightarrow\)A\(\ge\)1    \(\Rightarrow\)Min(A)=1

\(\Rightarrow\)\(\orbr{\begin{cases}\left(X-2\right)^{2016}=0\\\left(2Y-1\right)^{2018}=0\end{cases}}\)

Phần còn lại tự làm bạn nhé !