K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Ta có \(\left(x-2\right)^{2016}\ge0\)với mọi giá trị của x

\(\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x

=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}\ge0\)với mọi giá trị của x

=> \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\ge1\)với mọi giá trị của x

=> Amin = 1 khi và chỉ khi \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)

Ta lại có \(\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}=0\)

=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy khi x = 2 và \(y=\frac{1}{2}\)thì \(A=\left(x-2\right)^{2016}+\left(2y-1\right)^{2018}+1\)đạt GTNN là 1.

7 tháng 5 2018

A = ( x-2)2016  +  (2y-1)2018 + 1

Ta có : ( x-2)2016\(\ge\)0

           (2y-1)2018\(\ge\)0

\(\Rightarrow\)  ( x-2)2016  +  (2y-1)2018 + 1\(\ge\)1

\(\Rightarrow\)A\(\ge\)1    \(\Rightarrow\)Min(A)=1

\(\Rightarrow\)\(\orbr{\begin{cases}\left(X-2\right)^{2016}=0\\\left(2Y-1\right)^{2018}=0\end{cases}}\)

Phần còn lại tự làm bạn nhé !

23 tháng 2 2016

a, vì (x-1)^2 >/ 0 với mọi x

(y-1)^2 >/ 0 với mọi y

=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y

=>(x-1)^2+(y-1)^2+3 >/ 3

Do đó Amax=3

 Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1

(y-1)^2 =0<=>y=1

23 tháng 2 2016

a) x=1,y=1

b) x=3,y=0

25 tháng 4 2020

A = ( x - 2 )2 + 2019 

    ( x-  2 )2 \(\ge0\forall x\)

=> ( x - 2)2 + 2019 \(\ge2019\)

=> A \(\ge2019\)

Dấu " = " xảy ra <=> ( x - 2)2 =0

                                    <=> x = 2 

b) Bạn xem lại đề nha !Nếu đề không sai thì nhắn lại với mình 

c) C = -( 3 -x)100 - 3. ( y + 2 )200 + 2020 

( 3-x )100 \(\ge0\forall x\)

=> - ( 3-x)100 \(\le0\forall x\)

Tương tự : - 3.( y+2)100 \(\le0\forall y\)

=> C \(\le2020\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(3-x\right)^{100}=0\\\left(y+2\right)^{100}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

25 tháng 4 2020

@Shadow@ Đề câu b) đúng rồi đó

\(B=\left(x-3\right)^2+\left(y-2\right)^2-2018\)

ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\inℤ\\\left(y-2\right)^2\ge0\forall y\inℤ\end{cases}}\)

=> \(\left(x-3\right)^2+\left(y-2\right)^2-2018\le2018\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

5 tháng 3 2018

A = (x - 2)2 + 3

Ta có \(\left(x-2\right)^2\ge0\) với mọi giá trị của x

=> \(\left(x-2\right)^2+3\ge3\)với mọi gt của x

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2=0\)

=> x - 2 = 0 => x = 2

3 tháng 8 2015

1. ta có 

\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66

\(3^x.3+3^x.3.4+3^x:3\)=66

3x.3+3x.12+3x.1/3=66

3x.(3+12+1/3)=66

3x.64/3=66

3x=66:64/3

3x=2187

3x=37

=> x=7

2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)

  \(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)

từ đây suy ra 

 

 

 

 

29 tháng 3 2021

3+12+1/3=64/3 ???? vô lí

lấy máy tính thử tính coi

27 tháng 2 2019

Câu hỏi của Nguyễn Thảo Nguyên - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo