K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left|m+1\right|+\left|m-4\right|=\left|m+1\right|+\left|4-m\right|>=\left|m+1+4-m\right|=5\)

Dấu = xảy ra khi -1<=m<=4

12 tháng 2 2017

Đáp án đúng : C

Dấu “=” xảy ra  ⇔ m + 1 4 − m ≥ 0

⇔ − 1 ≤ m ≤ 4

Vậy GTNN của A là 5 khi  − 1 ≤ m ≤ 4

30 tháng 12 2023

\(A=\sqrt{m^2+2m+1}+\sqrt{m^2-8m+16}\)

\(=\sqrt{\left(m+1\right)^2}+\sqrt{\left(m-4\right)^2}\)

\(=\left|m+1\right|+\left|m-4\right|\)

\(=\left|m+1\right|+\left|4-m\right|>=\left|m+1+4-m\right|=5\)

=>Amin=5

7 tháng 6 2021

\(\Delta=4m^2+69\ge0\Leftrightarrow\begin{matrix}m\ge\dfrac{\sqrt{69}}{2}\\m\le-\dfrac{\sqrt{69}}{2}\end{matrix}\)

viet : \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-\left(m^2+5\right)\end{matrix}\right.\)

ta có : \(A=\left(x_1+x_2\right)^2-x_1x_2+2m=49+m^2+5+2m=m^2+2m+54\)

vì \(m\ge\dfrac{\sqrt{69}}{2}\Rightarrow m^2+2m+54\ge\dfrac{69+2\sqrt{69}+216}{4}\) hay \(A\ge\dfrac{69+2\sqrt{69}+216}{4}\)

21 tháng 4 2022

a) Xét pt đã cho có \(a=m^2+m+1\)\(b=-\left(m^2+2m+2\right)\)\(c=-1\)

Nhận thấy rằng \(ac=\left(m^2+m+1\right)\left(-1\right)=-\left(m^2+m+1\right)\)

\(=-\left(m^2+2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Vì \(-\left(m+\dfrac{1}{2}\right)^2\le0\) và \(-\dfrac{3}{4}< 0\) nên \(-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\) hay \(ac< 0\). Vậy pt đã cho luôn có 2 nghiệm trái dấu.

b) Theo câu a, ta đã chứng minh được pt đã cho luôn có 2 nghiệm trái dấu \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m^2+2m+2\right)}{m^2+m+1}=\dfrac{m^2+2m+2}{m^2+m+1}\)

Nhận thấy \(m^2+m+1\ne0\) nên ta có:

\(\left(m^2+m+1\right)S=m^2+2m+2\) \(\Leftrightarrow Sm^2+Sm+S-m^2-2m-2=0\)\(\Leftrightarrow\left(S-1\right)m^2+\left(S-2\right)m+\left(S-2\right)=0\)(*)

pt (*) có \(\Delta=\left(S-2\right)^2-4\left(S-1\right)\left(S-2\right)\)\(=S^2-4S+4-4\left(S^2-3S+2\right)\)\(=S^2-4S+4-4S^2+12S-8\)\(=-3S^2+8S-4\)

Để pt (*) có nghiệm thì \(\Delta\ge0\) hay \(-3S^2+8S-4\ge0\)\(\Leftrightarrow-3S^2+6S+2S-4\ge0\)\(\Leftrightarrow-3S\left(S-2\right)+2\left(S-2\right)\ge0\) \(\Leftrightarrow\left(S-2\right)\left(2-3S\right)\ge0\)

Ta xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}S-2\ge0\\2-3S\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\ge2\\S\le\dfrac{2}{3}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}S-2\le0\\2-3S\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\le2\\S\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\dfrac{2}{3}\le S\le2\) (nhận)

Khi \(S=\dfrac{2}{3}\) thì (*) \(\Leftrightarrow\left(\dfrac{2}{3}-1\right)m^2+\left(\dfrac{2}{3}-2\right)m+\dfrac{2}{3}-2=0\)\(\Leftrightarrow-\dfrac{1}{3}m^2-\dfrac{4}{3}m-\dfrac{4}{3}=0\)\(\Leftrightarrow m^2+4m+4=0\)

\(\Leftrightarrow\left(m+2\right)^2=0\) \(\Leftrightarrow m+2=0\) \(\Leftrightarrow m=-2\)

Khi \(S=2\) thì (*) \(\Leftrightarrow\left(2-1\right)m^2+\left(2-2\right)m+2-2=0\)\(\Leftrightarrow m^2=0\)

  \(\Leftrightarrow m=0\)

Vậy GTNN của S là \(\dfrac{2}{3}\) khi \(m=-2\) và GTLN của S là \(2\) khi \(m=0\)

 

21 tháng 3 2022

1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Suy ra pt luôn có 2 nghiệm

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)

Đề sai r bạn

\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)

Vậy m=`7/4` thì A đạt GTNN

 

1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)

\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)

Do đó: Phương trình luôn có hai nghiệm

2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)

\(=\left(-2m\right)^2-7\left(2m-1\right)\)

\(=4m^2-14m+7\)

3 tháng 3 2016

bài này sử dụng định lí vi-ét nha

1: Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8

=(2m-4)^2+8>=8>0 với mọi m

=>PT luôn có 2 nghiệm pb

2: Để pt có hai nghiệm trái dấu thì 2m-5<0

=>m<5/2

3: A=(x1+x2)^2-2x1x2

=(2m-2)^2-2(2m-5)

=4m^2-8m+4-4m+10

=4m^2-12m+14

=4(m^2-3m+7/2)

=4(m^2-2m*3/2+9/4+5/4)

=4(m-3/2)^2+5>=5

Dấu = xảy ra khi m=3/2

15 tháng 5 2023

`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`

                             `=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`

  `=>` Ptr có `2` nghiệm phân biệt `AA m`

`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`

          `<=>2m-5 < 0<=>m < 5/2`

`3) AA m` ptr có `2` nghiệm phân biệt

  `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`

Ta có: `A=x_1 ^2+x_2 ^2`

`<=>A=(x_1+x_2)^2-2x_1.x_2`

`<=>A=(2m-2)^2-2(2m-5)`

`<=>A=4m^2-8m+4-4m+10`

`<=>A=4m^2-12m+14`

`<=>A=(2m-3)^2+5 >= 5 AA m`

   `=>A_[mi n]=5`

Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`

12 tháng 7 2018

Đáp án B