\(\frac{14x^2+14x+49}{x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2021

M = x2 + 26y2 - 10xy + 14x - 76y + 59

= ( x2 - 10xy + 25y2 + 14x - 70y + 49 ) + ( y2 - 6y + 9 ) + 1

= ( x - 5y + 7 )2 + ( y - 3 )2 + 1

Vì \(\hept{\begin{cases}\left(x-5y+7\right)^2\\\left(y-3\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu "=" xảy ra khi x = 8 ; y = 3

Vậy MinM = 1 <=> x = 8 . y = 3

Ta có : \(M=x^2+26y^2-10xy+14x-76y+59\)

\(=\left(x^2-10xy+25y^2\right)+14\left(x-5y\right)+49+\left(y^2-6y+9\right)+1\)

\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+\left(y-3\right)^2+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu \("="\)xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-5y+7=0\\y-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-15+7=0\\y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

Vậy \(MinM=1\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

20 tháng 11 2017

em chịu ạ! Tịt rùi! 

26 tháng 2 2017

\(B=\frac{14\left(x^2+2x+3\right)-36x-33}{3\left(x^2+2x+3\right)}=\frac{14}{3}+\frac{-3.\left(12x+11\right)}{3.\left(x^2+2x+3\right)}=\frac{14}{3}-C\)

\(C=\frac{12x+11}{x^2+2x+3}=\frac{12\left(x+1\right)-1}{\left(x+1\right)^2+2}=\frac{12y-1}{y^2+2}=D\)

\(4-D=\frac{4y^2+8-\left(12y-1\right)}{4\left(y^2+2\right)}=\frac{\left(2y-3\right)^2}{4\left(y^2+2\right)}\ge0\)

\(D\le4\Rightarrow C\le4\Rightarrow B\ge\frac{14}{3}-4=\frac{2}{3}\)

GTNN B=2/3 khi y=3/2=> x=1/2

3 tháng 4 2016

tớ thử rồi nhưng không phải

29 tháng 3 2017

\(5x^2+y^2+4xy-14x-6y+2016=4x^2+4xy+y^2-6\left(2x+y\right)+9+x^2+2x+1+2006\)

\(=\left(2x+y\right)^2-6xy+9+\left(x+1\right)^2+2006\)

\(=\left(2x+y-3\right)^2+\left(x+1\right)^2+2006\)

lập luận nha gtnn là 2006

29 tháng 3 2017

5x^2+y^2+4xy-14x-6y+2016

=4x^2+x^2+y^2+y^2-y^2+4xy-14x-6y+9+49+1958

=4x^2+4xy+y^2+x^2-14x+49+y^2-6y+9-y^2+1958

=(4x^2+4xy+y^2)+(x^2-14x+49)+(y^2-6y+9)-y^2+1958

=(2x+y)^2+(x-7)^2+(y-3)^2-y^2+1958

Mà: + (2x+y)^2+(x-7)^2+(y-3)^2-y^2\(\ge\) 1958

Vậy GTNN là: 1958

30 tháng 1 2019

a, A xác định

\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)

\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)

\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)

b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)

\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)

\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)

c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)

\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)

Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)

30 tháng 3 2019

Bài của Hùng rất thông minh

Đang định có cách khác mà dài hơn cách Hùng nên thui

^^ 2k5 kết bạn nhé