Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
x | -2 5/4 |
5/4-x | + | + 0 - |
x+2 | - 0 + | + |
(5/4-x)(x+2) | - 0 + 0 - |
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)
Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)
Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)
Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)
ta có với mọi x: /x+5/ lớn hơn hoặc bằng 0
suy ra ; -/x+5/ bé hơn hoặc bằng 0
suy ra ; 3.5-/x+5/ bé hơn hoặc bằng 3.5 =15
suy ra 1/ 15-/x+5/ lớn hơn hoặc bằng 1/15
Dấu bằng xảy ra khi và chỉ khi /x+5/=0
suy ra x=-5
vậy E min =1/15 khi và chỉ khi x=-5
Kết Quả Bằng 8 Nhưng Ko biếtCách Làm Ai biết cách làm Thì Mong Giúp Đỡ
|x|\(\ge\)0
=>|8-x|\(\ge\)8
=> giá trị nhỏ nhất của A là 8
khi x =0
k minh nha
đặt trị tuyệt đối của x là a để đơn giản biểu thức,ta có biểu thức tương đương 3a/2-5a/3-4/5=4a/3-5a/3+1
<=>a(3/2-5/3-4/3+5/3)=1+4/5
<=>a/6=9/5=>a=54/5<=>trị tuyệt đối của x là 54/5 nên x =54/5 hoặc -54/5
GTTĐ của số đằng trước chữ L hay đằng sau chữ L hay cả hai vậy bạn?
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
- Với x-2=-(x-2)
=>x-2=-x+2
=>x=2
- Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
- Với 2x+3=-(5x-1)
=>2x+3=-5x+1
=>x=-2/7 (loại)
- Với 2x+3=5x-1
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
D = l x + 1/3 l + l x + 1/4 l + l x + 1/2l >= lx + 1/3l + l-x-1/2l = l x + 1/3 - x - 1/2l =l -1/6 l = 1/6
Min D = 1/6 khi và chỉ khi
x + 1/3 >= 0 x>= -1/3
x + 1/4 = 0 <=> x = -1/4
-x-1/2 >=0 x< = -1/2
Vậy MIn D = 1/6 khi x = -1/4
kkkkkkkkkkkkkkkkk