K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
HD
Tập hợp các giá trị nguyên của x để M = \(|x-\left\{\frac{5}{4}\right\}|+|x+2|\)
đạt giá trị nhỏ nhất
0
AG
0
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)
mình làm sai rồi nhé bạn
là dấu "=" xảy ra khi xy>=0
thật sự xin lỗi