K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

A = | x - 1 | + | y + 3/4 | - 2020

Ta có : | x - 1 | ≥ 0 ∀ x ; | y + 3/4 | ≥ 0 ∀ y

=> | x - 1 | + | y + 3/4 | ≥ 0 ∀ x, y

=> | x - 1 | + | y + 3/4 | - 2020 ≥ -2020 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+\frac{3}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{3}{4}\end{cases}}\)

=> MinA = -2020 <=> x = 1 ; y = -3/4

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

\(A\ge2020\forall x,y\)

Dấu '=' xảy ra khi x=-5 và y=2021

20 tháng 11 2021

Answer:

Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu '' = '' xảy ra khi: \(a.b\ge0\)

\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)

Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)

20 tháng 11 2021

Bạn Yen Nhi: đề ghi là |x+1| nhé

29 tháng 4 2016

Với \(x<4,\) ta có: \(A=-x+4-x+2020=2024-2x\). Do \(x<4\) nên \(A>2024-2.4=2016\).

Với \(4\le x\le2020\), ta có: \(A=x-4-x+2020=2016\).

Với \(x>2020,\) ta có \(A=x-4+x-2020=2x-2024\). Do \(x>2020\) nên \(A>2.2020-2024=2016\)

Vậy \(minA=2016\) khi \(x\in\left[4;2020\right]\)

Chúc em luôn học tập tốt :)

2016 nhé! Ủng hộ nha

3 tháng 10 2021

ta thấy: \(\left|x-2010\right|\ge0\)\(\left(y+2011\right)^{2020}\ge0\)

\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

8 tháng 3 2020

1, Ta có: \(\left(x-y\right)^6+|47-x|+3^3\ge0+0+9=9\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\47-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=47\\y=47\end{cases}}\)

2, Ta có: \(\left(x+5\right)^2+\left(y-9\right)^2+2020\ge0+0+2020=2020\)

Dấu "'=" xảy ra khi \(\hept{\begin{cases}x+5=0\\y-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=9\end{cases}}}\)