K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

\(M=\frac{2016x+1512}{x^2+1}\)

\(=\frac{-504x^2-504+504x^2+2016x+2016}{x^2+1}\)

\(=-504+\frac{504\left(x^2+4x+4\right)}{x^2+1}\)

\(=-504+\frac{504\left(x+2\right)^2}{x^2+1}\)

\(\ge-504\)

Dấu "=" xảy ra tại x=-2

Vậy.....

12 tháng 3 2021

\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.

10 tháng 2 2021

Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)

\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(P) = 2015 khi x = 1

Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)

\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)

\(=2015+\left(\frac{x-1}{x}\right)^2\)

Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow P\ge2015\forall x\ne0\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)

\(\Leftrightarrow\frac{x-1}{x}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(MinP=2015\Leftrightarrow x=1\)

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

GTNN của A:

A=x2+1/x2-x+1=1+x/x2+1-x

=>A>1

suy ra:GTNN cùa A=2 với x=1

11 tháng 10 2017

A=2

X=1

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b,