Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
\(\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{xy+yz}=\frac{4}{y\left(x+z\right)}=\frac{4}{y\left(4-y\right)}=\frac{4}{-y^2+4y}=\frac{4}{-\left(y^2-4y+4\right)+4}\ge1\)
Dấu "=" xảy ra tại \(x=z=1;y=2\)
Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT Cô-si, ta có :
\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)
\(\Rightarrow x+y\ge2\)
Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\); \(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)
Vậy GTNN của P là 2 khi x = y = 1
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)
Bài này có nhiều cách làm nhá cái này mình làm bạn tham khảo thôi nhá
Ta có \(P=\frac{xy}{x^2+y^2}\)
\(\Rightarrow\frac{1}{P}=\frac{x^2+y^2}{xy}\)
Mà Theo BĐT Cô si thì
\(x^2+y^2\ge2xy\)
\(\Rightarrow\frac{1}{P}\ge\frac{2xy}{xy}=2\)
\(\frac{1}{P}\ge2\Leftrightarrow2P\le1\Leftrightarrow P\le\frac{1}{2}\)
Vậy Max \(P=\frac{1}{2}\) Khi x=y=...
Có cách ngắn hơn nhưng minhf lười =))
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
Áp dụng bđt với x,y > 0 thì: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)ta có : \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\)(1)
Ta lại có \(1^2=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\Rightarrow\frac{1}{2xy}\ge2\)(2)
Từ (1) và (2) suy ra \(A\ge4+2=6\)
Dấu = xảy ra <=> x = y = 1/2