Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(3x^3+13x^2-7x+5\)
= \(3x^3-2x^2+15x^2-10x+3x-2+7\)
= \(x^2\left(3x-2\right)+5x\left(3x-2\right)+\left(3x-2\right)+7\)
= \(\left(3x-2\right)\left(x^2+5x+1\right)+7\)
=> biểu thức ban đầu = \(x^2+5x+1+\frac{7}{3x-2}\)
Vì x nguyên nên x2 + 5x +1 nguyên
=> Để biểu thức nguyên thì 3x - 2 phải là ước của 7
Sau đó bạn tự giải tiếp nhé
Chúc bạn làm bài tốt
a) Ta thực hiện phép chia \(3x^3+13x^2-7x+5\) cho \(3x-2\). Khi đó ta có:
\(A=\frac{3x^3+13x^2-7x+5}{3x-2}=3x^2+5x+1+\frac{7}{3x-2}\)
Nếu x nguyên thì \(3x^2+5x+1\in\text{Z}\) nên để A nguyên thì \(\frac{7}{3x-2}\in Z\)
\(\Rightarrow3x-2\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\)
b) Ta có: \(B=\frac{2x^5+4x^4-7x^3-44}{2x^2-7}=\left(x^3+2x^2+7\right)+\frac{5}{2x^2-7}\)
Để B nguyên thì \(\frac{5}{2x^2-7}\in Z\Rightarrow2x^2-7\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-1;1;2;-2\right\}\)
a: \(\Leftrightarrow3x^3-2x^2+15x^2-10x+3x-2+7⋮3x-2\)
\(\Leftrightarrow3x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1\right\}\)
b: \(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49x+49x-44⋮2x^2-7\)
\(\Leftrightarrow2401x^2-1936⋮2x^2-7\)
\(\Leftrightarrow4802x^2-3872⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(12935\right)\)
\(\Leftrightarrow2x^2-7\in\left\{1;5;13;65;199;995;2587;12935;-1;-5\right\}\)
\(\Leftrightarrow2x^2\in\left\{8;72;2\right\}\)
hay \(x\in\left\{2;-2;6;-6;1;-1\right\}\)
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
a)
ĐKXĐ: \(x\ne-4\)
Để A nguyên thì \(3x+21⋮x+4\)
\(\Leftrightarrow3x+12+9⋮x+4\)
mà \(3x+12⋮x+4\)
nên \(9⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(9\right)\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)
\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)
\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)
mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)
nên \(7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)
Vậy: \(x\in\left\{1;0;4;-3\right\}\)
Để thương có giá trị nguyên thì:
\(3x^3+13x^2-7x+5⋮3x-2\)
\(\Rightarrow x^2\left(3x-2\right)+5x\left(3x-2\right)+3x-2+7⋮3x-2\)
\(\Rightarrow7⋮3x-2\)
\(\Rightarrow3x-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-\frac{5}{3};\frac{1}{3};1;3\right\}\)
Mà \(x\in Z\Rightarrow x\in\left\{1;3\right\}\)