K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

B = (x2 - 16) + |y - 3| - 2 

B = x- 16 - 2 + |y + 3|

B = x2 - 18 + |y + 3|

Ta có :

x2 \(\ge0\)

|y + 3| \(\ge0\)

=> x2 + |y + 3| \(\ge0\)

=> x2 - 16 + |y + 3| \(\le16\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)

23 tháng 4 2017

Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)

Mà \(\left|y-3\right|\ge0\)

\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)

\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)

Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)

Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3

10 tháng 5 2017

\(A=|x-12|+|y+9|+1997\)

Để A nhỏ nhất thì |x-12| và |y+9| nhỏ nhất

Ta thấy |x-12| và |y+9| \(\ge\)0 \(\Rightarrow\)|x-12| = |y+9| = 0

\(\Rightarrow\)x = 12 và y = -9

\(B=\left(x^2-16\right)+|y-3|-2\)

Để B nhỏ nhất thì x2 - 16 và |y-3| nhỏ nhất.

Ta thấy x2 và |y-3| \(\ge\)0 \(\Rightarrow\)x2 = y-3 = 0

\(\Rightarrow x=0\) và y = 3

\(C=\dfrac{5x-19}{x-4}\Leftrightarrow\dfrac{5x-5\times4+1}{x-4}\Leftrightarrow5+\dfrac{1}{x-4}\)

Để C nhỏ nhất thì \(\dfrac{1}{x-4}\)nhỏ nhất \(\Leftrightarrow x-4\) lớn nhất

PS: x càng lớn càng tốt, không tìm được x đâu.

10 tháng 5 2017

Để A = |x-12|+|y+9|+1997 có GTNN thì |x-12| và |y+9| có GTNN

Mà |x-12| và |y+9| \(\ge\)0 nên để |x-12| và |y+9| có GTNN

Thì |x-12| = 0 \(\Rightarrow\) x - 12 = 0 \(\Leftrightarrow\) x = 0 +12 = 12

và |y+9| = 0 \(\Rightarrow\) y + 9 = 0 \(\Leftrightarrow\) y = 0 + 9 = -9

4 tháng 2 2020

Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời

11 tháng 11 2021
Thôi nhắn chả hiểu luôn
11 tháng 11 2021
Chịu vì nhắn ko hiểu luôn
11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

7 tháng 1 2020

các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi

7 tháng 1 2020

a,Vì \(|x+5|\ge0\) với \(\forall x\)

=>\(A\le20\)

Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)

                                 x=-5

Vậy Max A=20 khi x=-5

28 tháng 2 2019

ta có |x+19|+|y-5|+1980 >1980

<=>|x+19|+|y-5|>0

dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0

                                   <=>x=-19,y=5